

Project No. Coll - Ct - 2003 - 500291

ESECMaSE

Enhanced Safety and Efficient Construction of Masonry Structures in Europe

Horizontal Research Activities Involving SMEs

Collective Research

Work Package N°: 3

D 3.2. Analysis of Apartment House (AH) – Input for WP 4 to 6

Due date of deliverable: 30.11.2004 Actual submission date: 21.04.2005

Start date of project: 10.June 2004

Duration: 36 month

Organisation: name of lead contractor for this deliverable TU München

Project	Project co-funded by the European Commission within the Sixth Framework Programme (2002-2006)							
Dissemination Level								
PU	Public							
PP	Restricted to other programme participants (including the Commission Services)							
RE	Restricted to a group specified by the consortium (including the Commission Services)							
CO	Confidential, only for members of the consortium (including the Commission Services)							

TECHNISCHE UNIVERSITÄT MÜNCHEN

Institut für Baustoffe und Konstruktion

MPA BAU

Lehrstuhl für Massivbau Univ.-Prof. Dr.-Ing. K. Zilch

Arbeitsgruppe 4 Mauerwerk

ESECMaSE

No. sce-24005005

Date 2005-05-21

Deliverables D3.2: Analysis of Apartment House (AH) -Input for WP 4 to 6

Project: Enhanced Safety and Efficient Construction of Masonry Structures in Europe

Client: European Commission RESEARCH DIRECTORATE-GENERAL

Person in Charge: Dr.-Ing. Detleff Schermer

The investigation report includes:

51 pages

The report may only be published in full. The shortened or partial publication requires the prior permission of the Institute of Concrete and Masonry Structures.

MAILING ADDRESS: ADDRESS: BANK DATA: CONTACT PERSON:

80290 MUENCHEN **BUILDING N6** BAYER. LANDESBANK MUENCHEN ACCOUNT NO .: 24 866 DR.-ING. D. SCHERMER

PHONE +49 / 89 / 289 - 23038/39 THERESIENSTR. 90 E-MAIL: <u>esecmase@mb.bv.tum.de</u> FAX +49 / 89 / 289 - 23046 80333 MUENCHEN BANK CODE: 700 500 00 PHONE +49 / 89 / 289-23080

1.	Introduction	3
1.1	. Plans	3
1.2	. Geometric parameters	
1.3	. System	7
1.4	. Loadings	7
2.	Material law	9
2.1.	. Concrete	9
2.2.	. Masonry	9
2.3	. Numerical effort	13
<i>3</i> .	Initial, detailed Investigations on Apartment-House 1	14
3.1	. Structure	14
3.2	. Membrane forces	15
3.3	. Principal stresses	19
3.4	. Plasticising	22
3.5	. Distribution of the horizontal force	26
<i>4</i> .	Apartment-House 1	29
4.1	. Distribution of the shear force	29
4.2.	. Normal force	34
5.	Apartment-House 1-modified	36
5.1	. Distribution of the shear force	36
5.2	. Normal force	40
<i>6</i> .	Apartment-House 2	41
6.1	. Distribution of the shear force	41
6.2	. Normal force	45
7.	Apartment-House 2 - modified	46
7.1	. Distribution of the shear force	46
7.2	. Normal force	50
8.	Appendix	51

1. Introduction

In the first step, a review of mostly common types of apartment-houses will be carried out. Generally the investigations will focus on 4-storey buildings. Also the criterion of dominating long shear walls and the number of shear walls will be taken in consideration.

Due to the numerical effort, the investigations were carried out using a smeared modelling of masonry. Thereby local effects, like the influence of the unit size / the format or the perforation pattern couldn't be determined (s. work-package 4). For the calculations, a non-linear behaviour of the masonry will be taken in account.

1.1. Plans

From a number of examined systems two representative plans have been chosen. They are termed basic-plans *Apartment-house-1 (AH1)* and *Apartment-house-2 (AH2)*. In a further step they were modified to type *AH1** and type *AH2**, where the number and length of the shear walls were modified.

For the numerical investigations, the system was reduced due to symmetric effects to the half structure (AH1 shown in Figure 1). The staircase is located in the plan down right. For the spacial model the stair-plate has been placed horizontal extending the regular slab.

The structure was investigated under horizontal forces acting in the "weak" direction, i.e. in the given plans from right to left end vice versa. Investigations with impact in the strong direction were left out, as not being relevant.

Figure 1: Plan of the Apartment-House 1 (AH1) with the numeration of the shear-walls

Figure 2: Plan of the modified Apartment-House 1 (AH1*) with the numeration of the shear-walls

Apartment-House 2 has a slightly different plan with the staircase top right.

Figure 3: Plan of the Apartment-House 2 (AH2) with the numeration of the shear-walls

Figure 4: Plan of the modified Apartment-House 2 (AH2*) with the numeration of the shear-walls

It was simplifying assumed that the opening for the doors and windows take the full storey height, i. e. no load bearing parapet or lintel exist. This simplification was necessary to reduce the effort of the numerical spacial investigations using the finite-elementmethod.

As the relevant region under seismic loadings is generally the first storey, all investigations focus on sections in the lower storey. Therefore three sections at the cap of the wall (about 0,2m under the upper slab), in the middle of the wall and at the base of the wall (about 0,2cm above the fixings) have been chosen.

1.2. Geometric parameters

The thickness of the walls was taken to 17^5 , 24 resp. 30 cm. The storey height was taken constantly to 2.75 m with a thickness of the concrete slabs of 20cm.

The length of the walls is given in the following tables:

Wall No.:	1	2	3	4	5	6	7	8	9
Length I [m]	1	1,25	1,25	1	1,75	1,4	1,25	1,75	1
thickness d [cm]	24	24	24	24	17.5	24	24	24	24

Table 2: Geometric parameters of the modified Apartment House 1 (AH1*)

Wall No.:	1	2	3	4	5	6	7	8	9
Length I [m]	1	1,75	1,25	1	2.75	2.4	1.75	1.75	1
thickness d [cm]	24	24	24	24	17.5	24	24	24	24

Table 3: Geometric parameters of Apartment House 2 (AH2)

Wall No.:	1	2	3	4	5	6	7	8	9	10	11	12
Length I [m]	0.875	1.75	1.5	0.5	2.25	4.75	2.625	3	1	0.875	1.5	0.625
thickness d [cm]	30	30	30	30	24	30	30	30	24	30	30	30

Table 4: Geometric parameters of the modified Apartment House 2 (AH2*)

Wall No.:	1	2	3	4	5	6	7	8	9	10	11
Length I [m]	0.875	1.75	1.5	0.5	2.25	2.625	3	1	0.875	1.5	0.625
thickness d [cm]	30	30	30	30	24	30	30	30	30	30	24

The roof of the apartment house was assumed to be a **f**at roof without a timber truss structure above. Also no balcony structures were taken into consideration. These simplifications helps the results become more comparable.

The number of storeys was taken to 3 and 4 to cover the mostly found types of apartment-house structures.

1.3. System

The numerical investigations have been carried out on a spacial finite-element system. The RC-slabs were considered remaining uncracked and the vertical shear walls were described by a nonlinear material law.

The interface between horizontal RC-slabs and the vertical masonry walls was assumed to be fix as tension failure perpendicular **b** the bed joints is included in the material model of the masonry walls.

The basement was assumed to be very stiff and therefore not deciding for the dynamic behaviour of the structure and for the failure modes. Therefore the basement was reglected. The fixing of the structure was assumed to be stiff without any flexibility.

The chosen finite-element-approximation enables to cover shell deformations and also plate deformations. The latter is realized by a splitting of the plate-bending in 2 parallel shell components. Therefore a differentiation in a lower and an upper component resp. side is made.

1.4. Loadings

For the calculations vertical and also horizontal loads were considered. The vertical loads were taken to the dead load of the structure and the quasi-permanent value of the live load according Eurocode 8. The vertical loads were simplified applied using a constant plane load in the concrete slabs including also the dead loads of the walls.

The horizontal load was applied by point loads in the slabs in each storey. The position in the horizontal direction was determined in the centre, as no torsional effects were intended. The distribution over the height of the structure was taken to a linear approximation of the first eigenform.

Figure 5: Estimated 1st eigenform of the structure and corresponding distribution of the horizontal forces The direction of the horizontal load was set in the weak direction – in the given plans orientated from right to left and vice versa.

2. Material law

2.1. Concrete

As explained above the concrete slabs were assumed to remain uncracked and behave linear-elastic. The Young-modulus was taken to 30.000 N/mm². The mass of the concrete was modified to cover the total dead load (concrete slabs and also masonry walls / as the mass of the masonry was neglected to simplify the characteristics of the normal force in the walls in dependence of the height) and the permanently present live load in the load-case earthquake.

2.2. Masonry

For the vertical masonry walls under combined vertical and horizontal, i.e. combined normal-, bending- and shear-stress simple non-linearities had to be considered in its material law.

In the preliminary stage several in literature given material and failure models were reviewed and tried to integrate in existing FE-programmes. As a result it was found, that due to the numerical effort (spacial investigations of whole apartment house structures) and suitability of the FE-programmes the only possible failure criterion covered in a smeared material law was a tension failure. As the principal (tension) strain and stress under combined stress divergate from the orientation of the joints in the masonry, the assumption of a general tension failure contains in this regard a specific error. Neverthe less the description of the tension failure perpendicular to the bed joint using an isotropic failure criterion was assumed to be sufficient, proven by calculations on a cantilever wall. Even assuming an evanescently tension strength perpendicular to the bed joint in the calculations, a strength greater than zero has to be supplied for numerical reasons. Also in the regions of singularities (e.g. corners), of load application and of the coupling of horizontal and vertical shell-elements (Figure 6) singular tensions peaks appear due to rumerical reasons. Applying the finite-element approximation, with these effects without any tension strength a brittle failure will be indicated. Therefore a small isotropic tension strength of 0.18 resp. 0.3 MN/m² was chosen.

Generally a higher tension strength also can cover possible vertical reinforcement, like found in confined masonry. Therefore a calculation with a tension strength was carried out in addition.

Figure 6: Coupling of slabs and walls (deformed shape)

Under compression these kinds of singularity effects also appear, but no brittle failure occurs, as stress rearrangement is possible. On the other hand, under high compression stresses a plasticity of masonry is observed in experimental tests. Thus, for masonry under compression an ideal plastic behaviour was chosen when reaching the compression strength. This effect could be described as ductile.

In the following figures the strain-stress-relationship under compression (compression strength 8.5 N/mm²) and under tension (tension strength 0.18 N/mm²) is shown. The behaviour under tension also includes the fracture energy and the used element approximation.

Figure 7: Strain-stress-relationship under compression (compression strength 8,5 N/mm²) and under tension (tension strength 0,18 N/mm²) of a element

The investigations of a cantilever wall (I=1m, d=0,24m, h=2,75m) under normal (at the cap of the wall: v=33kN/m) and horizontal forces (H=4kN at the cap of the wall) lead to combined stress and the following figures:

Figure 8: Normal stress [kN/m] next to the foundation and regions of plasticity at a cantilever wall under the above given combined action (tension strength taken to 0.02 N/mm²)

Figure 9: Pricipal stresses and distribution of the shear stress [kN/m] next to the foundation under the above given combined action

The determination of regions of plasticising covers tension- and also compressionplasticising.

2.3. Numerical effort

As in the following the whole structure was investigated, the numerical effort was generally very high. In additional, the finite-element-mesh was constricted to investigate the influence of the element-dimensions up to 10cm. Therefore the duration of calculation was about 6 h, without pre- and post-processing.

3. Initial, detailed Investigations on Apartment-House 1

At the beginning the first investigations have been carried out on the structure *Apart-ment-House 1*. Here the result will be given for example very detailed, as the following parametric studies (s. following chapters) will be presented due to volume reasons just with the condensed results in tables and diagrams.

3.1. Structure

The structure was calculated with a tension strength of 0.18 N/mm² and a compression strength of 8.5 N/mm². The vertical load was 3x1206 = 3618 kN. The isometric view of the structure is given below.

Figure 10: Apartment-House 1 with 3 storeys - isometric view

The horizontal force was taken to 133 kN and distributed to the 3 slabs (according Figure 5) given in detail in Figure 11.

Figure 11: Distribution of the horizontal loads

3.2. Membrane forces

The results of the calculations were evaluated to the shear forces in the walls of the lowest storey in a section 20cm above the fixed nodes. The distribution of the membrane forces and shear flow in the section in the relevant walls 1 to 9 is shown below.

Figure 12: Apartment-House 1: Membrane forces [kN/m] perpendicular to the section - walls 1 to 4

Figure 13: Apartment-House 1: Membrane forces [kN/m] perpendicular to the section – walls 5 to 6

Figure 14: Apartment-House 1: Membrane forces [kN/m] perpendicular to the section - walls 7 to 9

Figure 15: Apartment-House 1: Membrane shear flow [KN/m] - walls 1 to 4

Figure 16: Apartment-House 1: Membrane shear flow [KN/m] – walls 5 to 6

Figure 17: Apartment-House 1: Membrane shear flow [KN/m] - walls 7 to 9

3.3. Principal stresses

The differentiation of upper and lower side (s. chapter 1.3) regarding the principal stresses is shown below.

Figure 18: Apartment-House 1: Trajectories (principal-stresses) on the upper side - walls 1 to 4

Figure 19: Apartment-House 1: Trajectories (principal-stresses) on the lower side - walls 1 to 4

Figure 20: Apartment-House 1: Trajectories (principal-stresses) on the upper side - walls 5 to 6

Figure 21: Apartment-House 1: Trajectories (principal-stresses) on the lower side - walls 5 to 6

Figure 22: Apartment-House 1: Trajectories (principal-stresses) on the upper side - walls 7 to 9

Figure 23: Apartment-House 1: Trajectories (principal-stresses) on the lower side - walls 7 to 9

3.4. Plasticising

The regions with plasticising are shown below.

Figure 24: Apartment-House 1: Plasticising on the upper side - walls 1 to 4

Figure 25: Apartment-House 1: Plasticising on the lower side - walls 1 to 4

Figure 26: Apartment-House 1: Plasticising on the upper side - walls 5 to 6

Figure 27: Apartment-House 1: Plasticising on the lower side – walls 5 to 6

Figure 28: Apartment-House 1: Plasticising on the upper side - walls 7 to 9

Figure 29: Apartment-House 1: Plasticising on the lower side - walls 7 to 9

Figure 30: Apartment-House 1: Plasticising on the lower side – whole structure

Figure 31: Apartment-House 1: Plasticising on the upper side - whole structure

Figure 32: Distribution of the total shear-force in the strucutre to the walls 1 to 9 (3-storey-structure, tension strength 0.18N/mm²)

In addition a calculation on a 4-storey structure was carried out (tension strength of 0.18 N/mm²; compression strength of 8.5 N/mm², vertical load 4824 kN; horizontal load 147kN). The distribution to the walls 1 to 9 is shown below.

Figure 33: Distribution of the total shear-force in the strucutre to the walls 1 to 9 (4-storey-structure, tension strength 0.18N/mm²)

Further the tension strength was enhanced to 0.4 N/mm² to investigate the effect. The distribution to the walls 1 to 9 is shown below.

Figure 34: Distribution of the total shear-force in the strucutre to the walls 1 to 9 (4-storey-structure, tension strength 0.4N/mm²)

Due to the enhancement of the tension strength a slightly different distribution was found.

4. Apartment-House 1

The following presented calculations on the apartment house 1 have been carried out with a tension strength of 0.3 N/mm² and a compression strength of 8.5 MN/m². The number of storeys remained constantly to 4. The horizontal force H was enhanced in several load steps form 100 kN to 800 kN. In addition also calculations with horizontal forces in the opposite direction were carried out – marked with affix *H-negative*. Generally the last load-levels indicate a "numerically" collapse of the structure as the residual forces enhanced significantly (about 600 kN resp. -500kN). This effect is indicated by the discrepancy of the external vertical load (applied dead load of the structure) and the resulting internal force in the mentioned section (s. appendix). Nevertheless the calculations have been carried out for all load-levels.

The results of the calculations were evaluated to determine the distribution of the total horizontal force H to each wall-sections (here mentioned the walls orientated in the direction of the horizontal force H) and in the next step to determine the position of the resulting normal force N in each wall-section – latter was described by the excentricity e.

4.1. Distribution of the shear force

The distribution to the single walls in the three sections - i.e. at the cap of the wall, in the middle of the wall and at the base of the wall - is shown in the following diagram. Additionally the results with negative horizontal forces are given.

Figure 35: Apartment-House 1- shear force in the base of the walls - positive H

Figure 36: Apartment-House 1-shear force in the middle of the walls - positive H

Figure 37: Apartment-House 1- shear force at the cap of the walls - positive H

Figure 38: Apartment-House 1– distribution of the shear force in the base of the walls – positive H

Figure 39: Apartment-House 1– distribution of the shear force in the middle of the walls – positive H

Figure 40: Apartment-House 1– distribution of the shear force at the cap of the walls – positive H

Figure 41: Apartment-House 1– distribution of the shear force in the base of the walls – <u>negati-</u> <u>ve</u> H

Figure 42: Apartment-House 1– distribution of the shear force in the middle of the walls – <u>nega-</u> <u>tive</u> H

Figure 43: Apartment-House 1– distribution of the shear force at the cap of the walls – <u>negative</u> H

Comparing the distribution of the horizontal forces at the cap of the wall with different orientation of the external horizontal force H a divergency appears. Especially the horizontal forces obtained by the walls 6, 8, and 5 / 7 differ. This effect could be explained with the configuration of the transverse walls in function of a flange and the orientation referring to orientation of the external horizontal force.

During the calculations it was found, that due to plate deformations of the transverse walls in the mentioned section secondary horizontal shear stresses resp. corresponding forces appeared. For the equilibrium of state in the mentioned walls orientated in longitudinal direction counteracting forces resulted. With arising external horizontal force H this effect was reduced. Further due to plate shear loadings approximate 10% of the total horizontal force was carried by the transverse walls. This has to be regarded when comparing the impact load H and the sum of the shear forces in the mentioned walls (important at higher load levels).

4.2. Normal force

The determination of the position of the resulting normal force N in each wall-section – latter was described by the excentricity e – is given in the tables in the annex. Regard-

ing the normal stresses a significant difference between the investigated sections, i.e. cap, middle and base of the wall, was recognized.

This effect enhanced with rising load levels, as the non-linear-effects, especially opening cross-sections due to exceeding tension strength, dominate.
5. Apartment-House 1-modified

The following presented calculations on the modified apartment house 1 have been carried out with a tension strength of 0.3 N/mm² and a compression strength of 8.5 MN/m². The number of storeys remained constantly to 4. The horizontal force H was enhanced in several load steps form 100 kN to 1000 kN. In addition also calculations with horizontal forces in the opposite direction were carried out – marked with affix *H-negative*. Generally the last load-levels indicate a "numerically" collapse of the structure as the residual forces enhanced significantly (400kN resp. -700kN). This effect is indicated by the discrepancy of the external vertical load (applied dead load of the structure) and the resulting internal force in the mentioned section (s. appendix). Nevertheless the calculations have been carried out for all load-levels.

The results of the calculations were evaluated to determine the distribution of the total horizontal force H to each wall-sections (here mentioned the walls orientated in the direction of the horizontal force H) and in the next step to determine the position of the resulting normal force N in each wall-section – latter was described by the excentricity e.

5.1. Distribution of the shear force

The distribution to the single walls in the three sections - i.e. at the cap of the wall, in the middle of the wall and at the base of the wall - is shown in the following diagram. Additionally the results with negative horizontal forces are given.

Figure 44: Apartment-House 1-modified – distribution of the shear force in the base of the walls – positive H

Figure 45: Apartment-House 1-modified – distribution of the shear force in the middle of the walls – positive H

Figure 46: Apartment-House 1-modified – distribution of the shear force at the cap of the walls – positive H

Figure 47: Apartment-House 1-modified – distribution of the shear force in the base of the walls – <u>negative</u> H

Figure 48: Apartment-House 1-modified – distribution of the shear force in the middle of the walls – <u>negative</u> H

Figure 49: Apartment-House 1-modified – distribution of the shear force at the cap of the walls – <u>negative</u> H

Comparing the distribution of the horizontal forces at the cap of the wall with different orientation of the external horizontal force H a divergency appears. Especially the horizontal forces obtained by the walls 6, 8, and 5 / 7 differ. This effect could be explained with the configuration of the transverse walls in function of a flange and the orientation referring to orientation of the external horizontal force.

During the calculations it was found, that due to plate deformations of the transverse walls in the mentioned section secondary horizontal shear stresses resp. corresponding forces appeared. For the equilibrium of state in the mentioned walls orientated in longitudinal direction counteracting forces resulted. With arising external horizontal force H this effect was reduced. Further due to plate shear loadings approximate 10% of the total horizontal force was carried by the transverse walls. This has to be regarded when comparing the impact load H and the sum of the shear forces in the mentioned walls (important at higher load levels).

5.2. Normal force

The determination of the position of the resulting normal force N in each wall-section – latter was described by the excentricity e – is given in the tables in the annex. Regarding the normal stresses a significant difference between the investigated sections, i.e. cap, middle and base of the wall, was recognized.

This effect enhanced with rising load levels, as the non-linear-effects, especially opening cross-sections due to exceeding tension strength, dominate.

6. Apartment-House 2

The following presented calculations on the apartment house 2 have been carried out with a tension strength of 0.3 N/mm² and a compression strength of 8.5 MN/m². The number of storeys remained constantly to 4. The horizontal force H was enhanced in several load steps form 100 kN up to 1100 resp. 1400 kN. In addition also calculations with horizontal forces in the opposite direction were carried out – marked with affix *H*-*negative*.

The results of the calculations were evaluated to determine the distribution of the total horizontal force H to each wall-sections (here mentioned the walls orientated in the direction of the horizontal force H) and in the next step to determine the position of the resulting normal force N in each wall-section – latter was described by the excentricity e.

6.1. Distribution of the shear force

The distribution to the single walls in the three sections - i.e. at the cap of the wall, in the middle of the wall and at the base of the wall - is shown in the following diagram. Additionally the results with negative horizontal forces are given.

Total horizontal force H [kN]

Figure 50: Apartment-House 2 – distribution of the shear force in the base of the walls – positive H

Total horizontal force H[kN]

Figure 51: Apartment-House 2 – distribution of the shear force in the middle of the walls – positive H

Figure 52: Apartment-House 2 – distribution of the shear force at the cap of the walls – positive

Total horizontal force H [kN]

Figure 53: Apartment-House 2 – distribution of the shear force in the base of the walls – <u>nega-</u> <u>tive</u> H

Total horizontal force H [kN]

Figure 54: Apartment-House 2– distribution of the shear force in the middle of the walls – <u>nega-</u> <u>tive</u> H

Total horizontal force H [kN]

Figure 55: Apartment-House 2 – distribution of the shear force at the cap of the walls – <u>negati-</u> <u>ve</u> H

Comparing the distribution of the horizontal forces at the cap of the wall with different orientation of the external horizontal force H a divergency appears. Especially the horizontal forces obtained by the walls 6, 8, and 5 / 7 differ. This effect could be explained with the configuration of the transverse walls in function of a flange and the orientation referring to orientation of the external horizontal force.

During the calculations it was found, that due to plate deformations of the transverse walls in the mentioned section secondary horizontal shear stresses resp. corresponding forces appeared. For the equilibrium of state in the mentioned walls orientated in longitudinal direction counteracting forces resulted. With arising external horizontal force H this effect was reduced. Further due to plate shear loadings approximate 10% of the total horizontal force was carried by the transverse walls. This has to be regarded when comparing the impact load H and the sum of the shear forces in the mentioned walls (important at higher load levels).

6.2. Normal force

The determination of the position of the resulting normal force N in each wall-section – latter was described by the excentricity e – is given in the tables in the annex. Regarding the normal stresses a significant difference between the investigated sections, i.e. cap, middle and base of the wall, was recognized.

This effect enhanced with rising load levels, as the non-linear-effects, especially opening cross-sections due to exceeding tension strength, dominate.

7. Apartment-House 2 - modified

The following presented calculations on the modified apartment house 2 have been carried out with a tension strength of 0.3 N/mm² and a compression strength of 8.5 MN/m². The number of storeys remained constantly to 4. The horizontal force H was enhanced in several load steps form 100 kN to 1300 kN. In addition also calculations with horizontal forces in the opposite direction were carried out – marked with affix *H-negative*. Generally the last load-levels indicate a "numerically" collapse of the structure as the residual forces enhanced significantly (600 resp. -600kN). This effect is indicated by the discrepancy of the external vertical load (applied dead load of the structure) and the resulting internal force in the mentioned section (s. appendix). Nevertheless the calculations have been carried out for all load-levels.

The results of the calculations were evaluated to determine the distribution of the total horizontal force H to each wall-sections (here mentioned the walls orientated in the direction of the horizontal force H) and in the next step to determine the position of the resulting normal force N in each wall-section – latter was described by the excentricity e.

7.1. Distribution of the shear force

The distribution to the single walls in the section next to the foundation - i.e. the base of the wall - is described in the following diagram.

Total horizontal force H [kN]

Figure 56: Apartment-House 2-modified – distribution of the shear force in the base of the walls – positive H

Total horizontal force H [kN]

Figure 57: Apartment-House 2-modified – distribution of the shear force in the middle of the walls – positive H

Figure 58: Apartment-House 2-modified – distribution of the shear force at the cap of the walls – positive H

Figure 59: Apartment-House 2-modified – distribution of the shear force at the base of the walls – <u>negative</u> H

Total horizontal force H [kN]

Total horizontal force H [kN]

Figure 61: Apartment-House 2-modified – distribution of the shear force at the cap of the walls – <u>negative</u> H

Comparing the distribution of the horizontal forces at the cap of the wall with different orientation of the external horizontal force H a divergency appears. In Figure 58 wall 5 and 6 obtain – at higher load levels – more horizontal force than wall 7. In the opposite direction of H wall 7 obtains significantly more horizontal force than wall 5 or 6. This effect could be explained with the configuration of the transverse walls in function of a flange and the orientation referring to orientation of the external horizontal force.

During the calculations it was found, that due to plate deformations of the transverse walls in the mentioned section secondary horizontal shear stresses resp. corresponding forces appeared. For the equilibrium of state in the mentioned walls orientated in longitudinal direction counteracting forces resulted. With arising external horizontal force H this effect was reduced. Further due to plate shear loadings approximate 10% of the total horizontal force was carried by the transverse walls. This has to be regarded when comparing the impact load H and the sum of the shear forces in the mentioned walls (important at higher load levels).

7.2. Normal force

The determination of the position of the resulting normal force N in each wall-section – latter was described by the excentricity e – is given in the tables in the annex. Regarding the normal stresses a significant difference between the investigated sections, i.e. cap, middle and base of the wall, was recognized.

This effect enhanced with rising load levels, as the non-linear-effects, especially opening cross-sections due to exceeding tension strength, dominate.

8. Appendix

In the appendix the distribution of the normal forces including the position described by the excentricity e referred to the middle of the length of the wall is given. Also the sum of vertical forces in each section is found. By comparing the external vertical load with the sum in the section an indication about the stability of the system is possible.

Table	5: Com	pilation	of the	appendix
	••••	plication	0	appondix

	Direction of H: positive Direction of H: negative							
	Section at the	Section in the	Section at the	Section at the	Section in the	Section at the		
	base of the wall	middle of the	cap of the wall	base of the wall	middle of the	cap of the wall		
		wall		wall				
Apartment House 1	Annex AH1	H-Pos H0 up to 900)	Annex AH1 H-	neg H -100 up to -9	00		
Apartment House 1		Annex AH1-			Annex AH1-			
modified		mod H-pos			mod H-neg			
		middle			middle			
Apartment House 2		Annex AH2 H-			Annex AH2 H-			
		pos middle			neg middle			
Apartment House 2	Annex AH2-	Annex AH2-	Annex AH2-	Annex AH2-				
modified	mod H-pos	mod H-pos	mod H-pos cap	mod H-neg				
	base	middle		base				

Annex AH1/H-Pos/H0 - 900

t j

report sce-24005005 from 2005-04-21

0 KN	
force H	
Horizontal	

tension strength 0,3 Mpa

NON-LINEAR RESULTS

											0	1417,8	4823,80
		10	1	12	13	14	15	6			Sum	Sum wallmiddle ist	Sum waimiddle soll
	tion Q/H Position of the resulting force N	IV/01 inside the cross section	IV/0! inside the cross section	IV/01 inside the cross section	IV/0I inside the cross section	IV/01 inside the cross section							
	M [kNm] propor	00'00	00'0	00'0	0,00	00'00	00'0	00'0	00'0	00'00			
	N [kN] e [m]	60,30	179,90	139,10	94,60	280,60	121,10	220,40	248,10	73,70	0 1417,8		
	a [kN]												
	D [m]	0,240	0,240	0,240	0,240	0,175	0,240	0,240	0,240	0.240			
75 m	L [m]	1,00	1,25	1,25	1,00	1,75	1,40	1,25	1,75	1.00			
Section 1,3	wall	-	7	e	4	5	9	2	8	6	Sum		

Itton of the resulting force N le the cross section le the cross section de the cross section
le the cross section le the cross section le the cross section
le the cross section le the cross section
le the cross section
te the cross section
le the cross section
te the cross section
t
(U
ι UJ

proportion Q/H Position of the resulting force N M [kNm] e [m] N [kN] Q [kN] [w] 0 [m] _ [

Section 2.625 m

wall

Annex AH1/H-Pos/H0 - 900

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY

	1440,6	0			Шŋ
 0,00	73,70		0,240	1,00	6
 0,00	242,80		0,240	1,75	ø
 0,00	221,20		0,240	1,25	7
 0,00	129,10		0,240	1,40	Q
0,00	311,20		0,175	1,75	പ
 0,00	90,30		0,240	1,00	4
0,00	136,00		0,240	1,25	n
 0,00	176,20		0,240	1,25	5
0,00	60,10		0,240	1,00	4 ~~

10//NG# 10//NG# 10//NG#

inside the cross section inside the cross section

1440,6 4825,80	Sum wallcap ist Sum wallcap soll
0	Sum
	16
	15
	14
	13
	12
	11
	10

- 0 % 4 % % ~ % ø	cap #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	middle #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	base #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01 #DIV/01	
, , 	10//IC#	10//IC#	10//JQ#	

Normal foce N	cap	middle	base
	60,10	60,30	609
	176,20	179,90	194,51
	136,00	139,10	150,5(
	90'30	94,60	102,31
	311,20	280,60	278,51
	129,10	121,10	115,21
	221,20	220,40	236,01
	242,80	248,10	264,6(
	73,70	73,70	74,31
	1440,60	1417,80	1476,80

Annex AH1/H-Pos/H0 - 900

Horizontal force H 100 KN

tension strength 0,3 Mpa

NON-LINEAR RESULTS

	proportion Q/F
	M [kNm]
	e [m]
	N [kN]
	a [kN]
	D [m]
1,375 m	L [m]
Section	wall

	660,1	518,4	419,6	515,8	5/3/8	429,9	266,8			3384,6
	10	, 1	12	<u>(</u>)	44	15	16			Sum
proportion Q/H Position of the resulting force N	3% inside the cross section	8% inside the cross section	9% inside the cross section	4% inside the cross section	14% inside the cross section	23% inside the cross section	14% inside the cross section	15% inside the cross section	10% inside the cross section	
M [kNm]	8,16	13,13	11,62	6,20	24,07	12,53	14,91	38,53	4,88	
e [m]	0,099	0,070	0,079	0,076	0,080	0,127	0,060	0,155	0,106	
N [kN]	82,40	187,60	147,10	81,60	300,90	98,70	248,50	248,60	46,00	1441,4
Q [kN]	3,09	7,69	8,89	4,54	13,70	23,70	14,30	14,80	10,40	101,11
D [m]	0,240	0,240	0,240	0,240	0,175	0,240	0,240	0,240	0.240	
L [m]	1.00	1,25	1,25	1,00	1,75	1,40	1,25	1,75	1.00	
Val	1	7	e	4	2	9	4	8	6	Sum

4826 4825,80

Sum wallmiddle ist Sum wallmiddle soll

proportion Q/H Position of the resulting force N M [kNm] e [m] IN [kN] Q [KN] [m] D ۲ [m]

Section 2.625 m

wall

Page 3 / 20

Annex AH1/H-Pos/H0 - 900

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY

		1451,7	93,42			Sum
 -1,75	-0,032	54,70	7,50	0,240	1,00	თ
 20,60	0,085	242,40	13,50	0,240	1,75	8
 10,97	0,048	228,60	10,50	0,240	1,25	7
 -1,77	-0,015	118,20	23,00	0,240	1,40	9
 -4,58	-0,014	326,90	11,00	0,175	1,75	5
 1,12	0,013	85,90	9,29	0,240	1,00	4
 2,25	0,016	140,70	7,33	0,240	1,25	9
 5,94	0,033	180,00	6,10	0,240	1,25	ы
 6,98	0,094	74,30	5,20	0,240	1,00	-

6% inside the cross section
7% inside the cross section
8% inside the cross section
10% inside the cross section
25% inside the cross section
11% inside the cross section
14% inside the cross section

4825,7 4825,80	Sum wallcap ist Sum wallcap soll
3374	Sum
286,7	16
401,6	15
580,1	14
511,6	13
426	12
499,8	11
668,2	10

	base	4%	8%	%6	3%	15%	21%	16%	15%	%6	100%
	middle	3%	8%	9%6	4%	14%	23%	14%	15%	10%	100%
	cap	6%9	%4	8%	10%	12%	25%	11%	14%	8%	100%
proportion Q/H	wall	L	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	س	4	<u>با</u>	ــــا ق	ـــــــــــــــــــــــــــــــــــــ	8	<u>ი</u>	Sum

.

Normal foce N	cap	middle	base
	74,30	82,40	89,80
	180,00	187,60	204,60
	140,70	147,10	161,10
	85,90	81,60	81,50
	326,90	300,90	303,30
	118,20	98,70	82,60
	228,60	248,50	273,50
	242,40	248,60	265,40
	54,70	46,00	38,40
	1451,70	1441,40	1500,20

.

Annex AH1/H-Pos/H0 - 900

report sce-24005005 from 2005-04-21

Horizontal force H 200 KN

tension strength 0,3 Mpa

NON-LINEAR RESULTS

າ 1.375 m	
Section	

	598'5	474,7	409,9	552,7	561,8	515,5	233,1			3346,2	4825,8 4825,80
	10	den.	12	13	14	15	16			Sum	Sum wallmiddle ist Sum wallmiddle soll
proportion Q/H Position of the resulting force N	5% inside the cross section	8% inside the cross section	9% inside the cross section	7% inside the cross section	15% inside the cross section	19% inside the cross section	14% inside the cross section	16% inside the cross section	8% inside the cross section		
M [kNm]	14,59	25,53	23,51	12,22	46,84	25,95	28,33	73,48	9,16		
e [m]	0,140	0,130	0,151	0,180	0,145	0,320	0,102	0,295	0,374		
N [kN]	104,20	196,40	155,70	67,90	323,00	81,10	277,70	249,10	24,50	1479,6	
Q [kN]	9,73	15,20	16,90	12,50	29,20	35,80	26,30	30,10	15,90	191,63	
D [m]	0,240	0,240	0,240	0,240	0,175	0,240	0,240	0,240	0,240		
r [m]	1,00	1,25	1,25	1,00	1,75	1,40	1,25	1,75	1,00		
wall	+-	2	e	4	n	9	2	60	6	Sum	

ection 0,12	25 m								
	[[]]	[m] Q	a [kN]	N [kN]	e [m]	M [kNm]	proportion Q/H Position of the resulting force N		
-	1,00	0,240	9,60	119,10	0,153	18,22	5% inside the cross section	10	583,5
2	1,25	0,240	15,40	216,30	0,179	38,72	8% inside the cross section	*-	447,5
60	1,25	0,240	16,90	172,80	0,241	41,64	9% inside the cross section	12	392,8
4	1,00	0,240	10,00	59,00	0,369	21,77	5% inside the cross section	13	561,7
5	1,75	0,175	29,50	329,90	0,235	77,53	16% inside the cross section	14	196,7
6	1,40	0,240	31,90	57,10	0,790	45,11	17% outside the cross section	15	544,4
7	1,25	0,240	27,30	313,90	0,118	37,04	15% inside the cross section	16	562
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1,75	0,240	30,10	266,50	0,405	107,93	16% inside the cross section		
6	1,00	0,240	13,40	9,72	1,760	17,11	7% outside the cross section		
11m			184,1	1544,32			8	Sum	3288,6
					-				
								Sum walibase ist	4832,92
								Sum wallbase soll	4825,80

proportion Q/H Position of the resulting force N M [kNm] e [m] N [kN] a [kN] [w] D ۲ س

Section 2.625 m

wall

614,3 464,1

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY

Annex AH1/H-Pos/H0 - 900

0,114 0,062 0,062 0,032 0,010 0,035 0,073 0,165 -0,020 1483,7 88,40 185,40 146,50 80,60 344,50 109,00 247,90 247,90 242,30 39,10 179 11,40 12,80 14,50 16,70 35,70 26,10 28,00 13,00 0,240 0,240 0,240 0,240 0,240 0,240 0,240 0,240 0,240 1,00 1,25 1,25 1,25 1,25 1,25 1,25 1,25 1,75 1,75 0 0 4 s ø ω တ Sum

6% inside the cross section
7% inside the cross section
8% inside the cross section
9% inside the cross section
15% inside the cross section
12% inside the cross section
7% inside the cross section

7 9 Sum

4824,9 4825,80	Sum wallcap ist Sum wallcap soll
3341,2	Sum
262,8	16
473	15
568	14
540	13
419	12

cap	88,40	185,40	146,50	80,60	344,50	109,00	247,90	242,30	39,10	1483,70
Normal foce N										
base	5%	%8	%6	2%	16%	47%	15%	16%	%4	100%
dle	5%	8%	9%6	7%	15%	19%	14%	16%	8%	100%

7% 8% 9% 15%

- N M 4 50 00 10 00

%9

cap

Wall

20% 15% 7% 10%

Sum

216,30 172,80 59,00

196,40 155,70 67,90 323,00 81,10

119,10

104,20 middle

base

329,90 57,10

313,90 266,50 9,72

277,70 249,10 24,50 1479,60

1544,32

Annex AH1/H-Pos/H0 - 900

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY

Horizontal force H 300 KN

tension strength 0,3 Mpa NON-LINEAR RESULTS

l		
I		
I		
I		
I		
I		
ļ		
I		
l		
l		
l		
I		_
I		
I		
l		-
l		
I		
l	ε	
I	ñ	
I	m	
	ç	
I	ŝ	
ł	ğ	
£	~ *	

	10		12	13	14	15	16			Sum
proportion Q/H Position of the resulting force N	7% inside the cross section	9% inside the cross section	10% inside the cross section	6% inside the cross section	19% inside the cross section	13% inside the cross section	16% inside the cross section	16% inside the cross section	5% inside the cross section	
M [kNm]	22,40	40,78	36,29	14,02	76,09	22,92	45,03	102,62	4,83	
e [m]	0,171	0,194	0,216	0,213	0,215	0,248	0,142	0,395	0,167	
N [kN]	131,00	210,20	168,00	65,80	353,90	92,40	317,10	259,80	28,90	1627,1
Q [kN]	18,70	25,60	26,80	16,30	50,70	35,70	43,80	43,00	13,00	273,6
[m] D	0,240	0,240	0,240	0,240	0,175	0,240	0,240	0,240	0,240	
[m]	1,00	1,25	1,25	1,00	1,75	1,40	1,25	1,75	1,00	
wall	-	2	en	4	2	9	2	ω	თ	Sum

4825 4825,80

Sum wallmiddle ist Sum wallmiddle soll

3197,9

516,9 427,4 398 571,2 549,5 549,5 194,1

ection 0, 1	125 m								
II CO	1.02	D [m]	O Ekni	N IKN]	[m] a	M [kNm]	nonontion Q/H Position of the resulting force N		
-	1.00	0.240	18,10	155,20	0,209	32,44	7% inside the cross section	10	492,5
2	1,25	0,240	25,30	234,90	0,277	65,07	10% inside the cross section	11	387,6
6	1,25	0,240	26,40	192,60	0,337	64,91	10% inside the cross section	12	374
4	1.00	0,240	12,10	46,50	0,424	19,72	5% inside the cross section	13	593,7
9	1.75	0,175	49,90	368,10	0,349	128,47	20% inside the cross section	14	513,0
ô	1,40	0,240	27,20	55,40	0,590	32,69	11% inside the cross section	15	616,4
4	1,25	0,240	43,30	369,70	0,173	63,96	17% inside the cross section	16	141,1
8	1,75	0,240	42,60	290,20	0,515	149,45	17% inside the cross section		
o o	1.00	0,240	6,76	9,04	0,602	5,44	3% outside the cross section		
Sum			251,66	1721,64			1	Sum	3119,2
								Sum wallbase ist	4840,84
								Sum wallbase soll	4825.80

	Position of the resulting force N
	proportion Q/H
	M [kNm]
	e [m]
	N [kN]
	Q [KN]
	[ɯ] O
2.625 m	r [m]
Section	wall

wall

Page 7 / 20

543,5

9

Annex AH1/H-Pos/H0 - 900

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY

			1582.2	254,20			Sum
	-5,56	-0,140	39,70	12,10	0,240	1,00	8
	55,76	0,225	247,80	39,60	0,240	1,75	8
	25,25	0,093	271,50	35,30	0,240	1,25	7
	-1,43	-0,012	118,80	37,00	0,240	1,40	g
	9,26	0,025	370,30	45,70	0,175	1,75	5
_	0,73	0,009	81,30	20,60	0,240	1,00	4
	8,34	0,054	154,40	22,70	0,240	1,25	ო
	16,30	0,084	194,00	21,60	0,240	1,25	7
	10,00	0, IZD	104,40	13,60	0,240	1,00	

8% inside the cross section
8% inside the cross section
9% inside the cross section
8% inside the cross section
15% inside the cross section
14% inside the cross section
5% inside the cross section

4829 4825,80	Sum wallcap ist Sum wallcap soll
3246,8	Sum
239,8	16
514,7	15
553,4	14
556	<u>5</u>
411,8	12
427,6	14

042E	%4	10%	10%	5%	20%	11%	17%	17%	3%	100%
Biladie	2%	%6	10%	%9	19%	13%	16%	46%	%5	100%
cap	%8	%8	%6	8%	18%	15%	14%	16%	5%	100%
Mail	<u>ب</u>	~~~	ლი იი	4	чо 	نی ب	⊾ ►~	80	۰ ۵	Sum

Normal foce N	cap	middle	base
	104,40	131,00	155,20
	194,00	210,20	234,90
	154,40	168,00	192,60
	81,30	65,80	46,50
	370,30	353,90	368,10
	118,80	92,40	55,40
	271,50	317,10	369,70
	247,80	259,80	290,20
	39,70	28,90	9,04
	1582,20	1627,10	1721,64

Annex AH1/H-Pos/H0 - 900

report sce-24005005 from 2005-04-21

# Horizontal force H 400 KN

tension strength 0,3 Mpa

NON-LINEAR RESULTS

	75 m
	Section 1,3
L	

	442,6	377,9	383,3	593,3	512.7	608,1	153,7			3071,6
	10	11	12	13	14	15	16			Sum
proportion Q/H Position of the resulting force N	8% inside the cross section	10% inside the cross section	10% inside the cross section	6% inside the cross section	20% inside the cross section	11% inside the cross section	17% inside the cross section	15% inside the cross section	4% inside the cross section	
M [kNm]	30,10	55,10	48,43	16,23	101,42	28,68	61,42	130,15	5,93	
e [m]	0,191	0,246	0,268	0,250	0,265	0,310	0,173	0,475	0,288	
N [kN]	157,60	224,00	180,70	64,90	382,70	92,50	355,00	274,00	20,60	1752
a [kN]	27,90	35,30	35,30	20,00	70,70	39,70	61,30	54,40	13,40	358
[m] Q	0,240	0,240	0,240	0,240	0,175	0,240	0,240	0,240	0,240	
E I	1,00	1,25	1,25	1,00	1,75	1,40	1,25	1,75	1,00	
wall	1	2	e	4	5	9	<u></u>	ω	თ	Sum

4823,6 4825,80

Sum wallmiddle ist Sum wallmiddle soll

ting force N	31 10 410,9	320,5 320,5		350,1 350,1	M         12         350,1           3n         13         625,9	M         12         350,1           M         13         625,9           M         14         471,5	xn         12         350,1           3n         13         625,9           3n         14         471,5           3n         15         687,5	xn         12         350,1           xn         13         625,9           xn         14         471,5           xn         15         687,5           xn         16         86,7	xn         12         350,1           xn         13         625,9           xn         14         471,5           xn         15         687,5           xn         16         86,7	n         12         350,1           nn         13         625,9           nn         14         471,5           nn         15         687,5           nn         16         86,7           nn         16         86,7           nn         16         86,6           nn         16         16
H Position of the resulting force N	1% inside the cross section	% inside the cross section		1% inside the cross section	<ul><li>% inside the cross section</li><li>% inside the cross section</li></ul>	<ul><li>% inside the cross section</li><li>% inside the cross section</li><li>% inside the cross section</li></ul>	<ul><li>% inside the cross section</li><li>% inside the cross section</li><li>% inside the cross section</li><li>% inside the cross section</li></ul>	<ul> <li>% inside the cross section</li> </ul>	<ul> <li>% inside the cross section</li> </ul>	<ul> <li>(% inside the cross section</li> <li>(% outside the cross section</li> </ul>
oportion Q/H Position o	8% inside the c	11% inside the c	A 40/ include the		4% inside the c	4% inside the c 21% inside the c	11% inside the c 4% inside the c 21% inside the c 9% inside the c	1.1% inside the c 4% inside the c 3% inside the c 18% inside the c	4% inside the C 4% inside the C 21% inside the C 9% inside the C 18% inside the C 16% inside the C	4% inside the C 4% inside the C 21% inside the C 9% inside the C 18% inside the C 16% inside the C 2% outside the
M [kNm] pro	46,45	87,93	83 35	20,00	18,85	18,85 169,32	18,85 169,32 31,94	18,85 169,32 31,94 90,49	169,32 169,32 31,94 90,49 181,42	18.5 18.5 169,32 31,94 90,49 181,42 3,24
e [m]	0,245	0,344	0.385		0,500	0,500	0,500 0,415 0,640	0,500 0,415 0,640 0,215	0,500 0,415 0,640 0,215 0,565	0,500 0,415 0,415 0,640 0,215 0,565 1,590
N [KN]	189,60	255,60	216.50		37,70	37,70 408,00	37,70 408,00 49,90	37,70 408,00 49,90 420,90	37,70 37,70 408,00 49,90 420,90 321,10	37,70 37,70 408,000 49,90 420,90 321,10 2,04
Q [kN]	27,00	34,50	34.70		13,60	13,60 68,70	13,60 68,70 28,50	13,60 68,70 28,50 59,50	13,60 68,70 59,50 53,40	13,60 68,70 59,50 59,50 53,40 5,00
D [m]	0,240	0,240	0.240		0,240	0,175	0,240 0,175 0,240	0,240 0,175 0,240 0,240	0,240 0,175 0,240 0,240 0,240	0,240 0,175 0,240 0,240 0,240 0,240 0,240
r [m]	1,00	1,25	1.25		1,00	1,75	1,00 1,75 1,40	1,00 1,75 1,40	1,00 1,75 1,75 1,25 1,75	1,75 1,75 1,75 1,25 1,75 1,00
	<b>.</b>	2	er.	>	×4	) 4 w	9430	- 1 Q Q	×4 10 10 1∼ ∞	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

proportion Q/H Position of the resulting force N M [kNm] e [m] N [kN] Q [KN] [w] 0 [m] T

Section 2.625 m

Wall

Page 9 / 20

Annex AH1/H-Pos/H0 - 900

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY

		100001	11'000			mno
		10 1107				
-6,08	-0,195	31,20	12,90	0,240	1,00	o o
67,42	0,265	254,40	50,70	0,240	1,75	8
31,83	0,109	292,00	51,00	0,240	1,25	7
0,00	0,000	122,40	42,40	0,240	1,40	ę
16,02	0,041	390,70	65,80	0,175	1,75	¢
-0,50	-0,006	82,80	24,80	0,240	1,00	4
11,12	0,069	161,20	30,40	0,240	1,25	n
20,95	0,104	201,40	30,50	0,240	1,25	2
13,73	0,132	118,20	1 NZ'0Z	0,240	00,F	

wall	cap	middle	base
<b>4</b>	8%	%8	8%
2	%6	10%	11%
ŝ	%6	10%	41%
4	%2	%9	4%
w	20%	20%	21%
w	13%	11%	%6
r~	15%	17%	48%
00	15%	15%	16%
ø	4%	4%	2%
um	100%	100%	100%

ide the cross section	tide the cross section	ide the cross section						
ű	ŝ	<u>Ľ</u>	<u>ĉ</u>	ŝ	<u>2</u>	ŝ	<u>2</u>	ins
8%	%6	%6	7%	20%	13%	15%	15%	4%

3170,4 4825,7 4825,80	n n wallcap ist n wallcap soli
3170,4	<u>u</u>
216,6	16
569,9	15
532,8	14
575,1	13
402,8	12
392,3	
400,8	10

Normal foce N	cap	middle	base
	119,20	157,60	189,60
	201,40	224,00	255,60
	161,20	180,70	216,50
	82,80	64,90	37,70
	390,70	382,70	408,00
	122,40	92,50	49,90
	292,00	355,00	420,90
	254,40	274,00	321,10
	31,20	20,60	2,04
	1655,30	1752,00	1901,34

Annex AH1/H-Pos/H0 - 900

report sce-24005005 from 2005-04-21

## Horizontal force H 500 KN

tension strength 0,3 Mpa

NON-LINEAR RESULTS

i 1,375 m	
Section	

r

	359,5	323,3	367,8	603,6	477,5	650,5	114,6			2896,8	4820.8	4825,80
	10	4	12	13	14	<del>1</del>	16			Sum	Sum wallmiddle ist	Sum wallmiddle soll
proportion Q/H Position of the resulting force N	8% inside the cross section	10% inside the cross section	10% inside the cross section	5% inside the cross section	21% inside the cross section	10% inside the cross section	18% inside the cross section	15% inside the cross section	3% inside the cross section			
M [kNm]	36,85	67,54	57,12	16,12	127,92	31,74	77,78	146,97	4,47			
[m] e	0,199	0,280	0,292	0,229	0,305	0,320	0,197	0,495	0,210			
N [kN]	185,20	241,20	195,60	70,40	419,40	99,20	394,80	296,90	21,30	1924		
Q [kN]	36,00	44,20	43,00	22,00	91,30	43,90	79,40	64,70	12,10	439,6		
[m] a	0,240	0,240	0,240	0,240	0,175	0,240	0,240	0,240	0,240		-	
L [m]	1.00	1,25	1,25	1,00	1,75	1,40	1,25	1,75	1,00			
wall	+	R	6	4	2	9	7	8	0	Sum		

	-			1	LE PLAL	Monthly Ducition of the merulting force N		
	Tul o		IN I KN	e fuil				1 000
	0,240	36,90	221,20	0,278	61,49	9% inside the cross section	10	320,1
<b> </b>	0,240	43,60	289,90	0,366	106,10	11% inside the cross section	<del>4</del>	231,1
<b>†</b>	0,240	41,90	248,80	0,395	98,28	10% inside the cross section	22	317,5
t	0,240	13,30	34,80	0,461	16,04	3% inside the cross section	13	645,3
t	0,175	89,40	464,70	0,455	211,44	22% inside the cross section	14	419,7
	0,240	28,80	50,60	0,600	30,36	7% inside the cross section	15	741,4
$\square$	0,240	78,10	471,30	0,261	123,01	20% inside the cross section	16	37,5
†	0,240	64,10	358,10	0,595	213,07	16% inside the cross section		
ſ	0,240	3,99	2,11	0,890	1,88	1% outside the cross section		
1		400,09	2141,51				Sum	2718,6
							Srim wallbace ist	4860.11
							Sum walibase soli	4825,80

proportion Q/H Position of the resulting force N M [kNm] e [m] N [kN] Q [kN] [w] D Ξ

Section 2.625 m

wall

Annex AH1/H-Pos/H0 - 900

(_)

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY

		1777,8	404,5			Sum
 -11,29	-0,338	33,40	15,30	0,240	1,00	6
 76,49	0,285	268,40	58,90	0,240	1,75	80
 38,82	0,123	315,60	64,50	0,240	1,25	4
 -4,38	-0,033	132,70	47,30	0,240	1,40	ę
20,58	0,049	419,90	83,60	0,175	1,75	£
 -4,29	-0,048	89,40	27,00	0,240	1,00	4
 12,39	0,073	169,70	35,70	0,240	1,25	0
 24,96	0,118	211,50	37,60	0,240	1,25	2
 18,66	0,136	137,20	34,60	0,240	1,00	-

wall	cap	middle	base
<del>، من</del> اب	%6	8%	9%6
<u>เ</u>	%6	10%	44%
ლ ო	%6	10%	40%
4	%2	5%	3%
ŝ	21%	21%	22%
 0	12%	10%	%4
~	16%	18%	20%
	15%	15%	16%
<del>م</del>	4%	3%	4%
m	100%	100%	100%

۰. م

ection	ection	ection	ection	tection	ection	ection	ection	section
cross s	cross s	cross s	cross s	CTOSS S	CTOSS \$	cross s	cross s	cross s
the	the	the	the	the	the	the	ţţ	the
inside	inside	inside	inside	inside	inside	inside	inside	inside
%6	%6	%6	7%	21%	12%	16%	15%	4%

0	<b>6</b>	12	13	14	15	16			Sum	
ction	ction	ction	ction	ction	ction	ction	ction	ction		

407,3 353,3 394,6 585,8 585,8 613,2 193,9

Sum wallcap ist Sum wallcap soll

Normal foce N	cap	middle	base
	137,20	185,20	221,20
	211,50	241,20	289,90
	169,70	195,60	248,80
	89,40	70,40	34,80
	419,90	419,40	464,70
	132,70	99,20	50,60
	315,60	394,80	471,30
	268,40	296,90	358,10
	33,40	21,30	2,11
	1777,80	1924,00	2141,51

Annex AH1/H-Pos/H0 - 900

ĺ

report sce-24005005 from 2005-04-21

600 KN
force H
Horizontal

NON-LINEAR RESULTS tension strength 0,3 Mpa

Section 1,375 m

outside the cross section

	10	11	12	5	44 I	ίΩ.	16			Sum
proportion Q/H Position of the resulting force N	8% inside the cross section	10% inside the cross section	10% inside the cross section	5% inside the cross section	22% inside the cross section	10% inside the cross section	17% inside the cross section	15% inside the cross section	3% inside the cross section	
M [kNm]	41,78	79,28	66,98	16,18	154,80	35,16	90,68	170,15	2,71	
e [m]	0,197	0,302	0,314	0,219	0,335	0,340	0,210	0,525	0,131	
N [kN]	212,10	262,50	213,30	73,90	462,10	103,40	431,80	324,10	20,70	2103,9
Q [kN]	42,40	54,60	52,40	24,70	114,30	51,80	92,20	77,00	17,60	527
[m] Q	0,240	0,240	0,240	0,240	0,175	0,240	0,240	0,240	0,240	
Ľ [m]	1,00	1,25	1,25	1,00	1,75	1,40	1,25	1.75	1.00	
wall	-	2	3	4	5	8	4	80	6	Sum

274,5 259,2 348,9 615,1 701,3 83,7 83,7 2716,4

4820,3 4825,80

Sum wallmiddle ist Sum wallmiddle soll

<u>ب</u>

3,125 m								
r [m]	D [m]	Q [kN]	N [kN]	e [m]	M [kNm]	proportion Q/H Position of the resulting force N		
1.00	0,240	42,80	247,00	0,306	75,58	9% inside the cross section	0	266,3
1,25	0,240	53,90	325,40	0,385	125,28	11% inside the cross section	<del>4</del> .	140.2
1,25	0,240	51,20	282,20	0,415	117,11	11% inside the cross section	12	286,1
1,00	0,240	13,50	31,10	0,495	15,39	3% inside the cross section	13	663,8
1,75	0,175	112,60	524,30	0,485	254,29	24% inside the cross section	14	372,3
1,40	0,240	30,30	49,20	0,640	31,49	6% inside the cross section	15	803,9
1.25	0,240	93,10	499,60	0,313	156,37	19% inside the cross section	16	16,7
1,75	0.240	75,50	395,90	0,615	243,48	16% inside the cross section		
1,00	0.240	5,37	-0,21	-2,010	0,42	1% inside the cross section		
	1	478,27	2354,493				Sum	2549,3
				•				
							Sum wallbase ist	4903,793
							Sum wallbase soll	4825,80

proportion Q/H Position of the resulting force N M [kNm] e [m] N [kN] Q [KN] <u>ت</u> م [w]

Section 2.625 m

wall

Page 13 / 20

Annex AH1/H-Pos/H0 - 900

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY

			1901,3	480 501 1901 31	480.501 1901.31
-14,21	-0,406	35,00		17,30	0,240 17,30
80,71	0,285	283,20		69,80	0,240 69,80
45,04	0,132	341,20		73,30	0,240 73,30
-5,52	-0,039	141,60		54,10	0,240 54,10
27,35	0,061	448,40		106,00	0,175 106,00
-6,42	-0,067	95,80		29,80	0,240 29,80
12,26	0,069	177,70	Ł	44,20	0,240 44,20
28,17	0,127	221,80	3	46,70	0,240 46,70
21,14	n, 130	120,001		39,30	0,240 39,30

wall	cap	middle	base	
~	8%	%8	%6	
ณ	10%	40%	41%	
ო	%6	40%	41%	
4	6%	5%	3%	
ŝ	22%	22%	24%	
G	11%	10%	%9	
7	15%	17%	19%	
80	15%	15%	16%	
Ð	4%	3%	1%	
m	100%	100%	100%	

2

| ross section  |
|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
| inside the ci | inside the cr | inside the ci | inside the cl |
| 8%            | 10%           | %6            | 6%            | 22%           | 11%           | 15%           | 15%           | 4%            |

2	11	12	13	14	15	16			Sum	
section										

4836,3 4825,80	Sum walicap ist Sum walicap soll
2935	Sum
171,6	16
658,8	15
479,7	14
594,4	13
386,3	12
313,8	11
330,4	10

NOTMAI TOCE N	cap	miaale	pase
	156,60	212,10	247,00
	221,80	262,50	325,40
	177,70	213,30	282,20
	95,80	73,90	31,10
	448,40	462,10	524,30
	141,60	103,40	49,20
	341,20	431,80	499,60
	283,20	324,10	395,90
	35,00	20,70	-0,21
	1901,30	2103,90	2354,49

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY

Annex AH1/H-Pos/H0 - 900

Horizontal force H 700 KN

NON-LINEAR RESULTS

tension strength 0,3 Mpa

	M [kNm
	e [m]
	N [KN]
	a [kN]
	[w] Q
1,375 m	[m] F
Section	wall

wall	r [m]	[ɯ] a	a [kN]	N [KN]	e [m]	M [kNm]	proportion (
-	1,00	0,240	50,40	245,50	0,209	51,31	
2	1.25	0,240	74,50	307,40	0,314	96,52	
3	1,25	0,240	72,80	258,70	0,326	84,34	-
4	1,00	0,240	38,60	84,60	0,198	16,75	
S	1.75	0,175	155,70	573,10	0,325	186,26	
9	1,40	0,240	67,40	125,10	0,370	46,29	-
4	1,25	0,240	103,20	465,80	0,239	111,33	
80	1,75	0,240	103,90	385,70	0,525	202,49	
6	1,00	0,240	20,40	11,10	0,343	3,81	
Sum			686,9	2457			ł

proportion	A H O	Position of the resulting force N
<b></b>	%1	inside the cross section
	11%	inside the cross section
	11%	inside the cross section
	6%	inside the cross section
	23%	inside the cross section
	10%	inside the cross section
	15%	inside the cross section
	15%	inside the cross section
	3%	inside the cross section

L

106,2	307,6	628,9	342,1	797,2	68,3	2361,9	4818,9	4825,80
2 ===	12	13	14	15	<del>7</del> 0	Sum	Sum wallmiddle ist	Sum wallmiddle soll

[m] Q	Q [kN]	N [KN]	e [m]	M [kNm]	_proportion Q/H Position of the resulting force N		
0,240	45,00	266,40	0,318	84,72	8% inside the cross section	10	240,8
0,240	64,30	358,30	0,405	145,11	12% inside the cross section	11	21,9
0,240	61,20	318,40	0,425	135,32	11% inside the cross section	12	261,4
0,240	15,00	33,10	0,491	16,25	3% inside the cross section	ş	683,6
0,175	136,00	580,70	0,515	299,06	25% inside the cross section	44	334,2
0,240	32,90	54,50	0,630	34,34	6% inside the cross section	22	877,5
0,240	100,90	513,80	0,352	180,86	18% inside the cross section	16	19,4
0,240	89,60	433,30	0,645	279,48	16% inside the cross section		
0,240	7,45	-2,25	0,456	-1,03	1% inside the cross section		
	552,35	2556,25				Sum	2488,8
			ł			Sum wallbase ist Sum wallbase soli	5045,05 4825,80

		248,4	269,9
		10	<b>4</b> ~~
	proportion Q/H Position of the resulting force N	8% inside the cross section	10% inside the cross section
	M [kNm]	22,26	2,91
	e [m]	0,126	0,013
	N [kN]	176,70	232,60
	a [kn]	41,60	55,00
	[m] D	0,240	0,240
625 m	۲ [m]	1,00	1,25
Section 2.	wall		2

Page 15 / 20

Annex AH1/H-Pos/H0 - 900

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY

		= { >>>>	22.000			aum
		4 04 0V	0. 0.1			
 -18,54	-0,450	41,20	20,80	0,240	1,00	6
 81,57	0,265	307,80	81,40	0,240	1,75	80
48,28	0,133	363,00	75,10	0,240	1,25	2
 -11,38	-0,073	155,90	64,60	0,240	1,40	9
 28,58	0,059	484,40	126,00	0,175	1,75	5
 -12,11	-0,113	107,20	34,00	0,240	1,00	4
10,79	0,057	189,30	51,90	0,240	1,25	e

9% inside the cross section
6% inside the cross section
23% inside the cross section
12% inside the cross section
14% inside the cross section
15% inside the cross section

380,9 598,4 699,2 160,1	2799,5 4857,6	2010204
<u>565466</u>	Sum walkap ist	oun waitap son

wałł	cap	middle	base
**	· 8%	%2	8%
~	10%	11%	12%
ę	%6	11%	11%
ধ	%9	%9	%£
ŝ	23%	23%	25%
G	12%	10%	%9
7	14%	15%	18%
8	15%	15%	16%
6	4%	3%	4%
Sum	100%	100%	4001

Normal foce N	cap	middle	base
	176,70	245,50	266,40
	232,60	307,40	358,30
	189,30	258,70	318,40
	107,20	84,60	33,10
	484,40	573,10	580,70
	155,90	125,10	54,50
	363,00	465,80	513,80
	307,80	385,70	433,30
	41,20	11,10	-2,25
	2058,10	2457,00	2556,25

Annex AH1/H-Pos/H0 - 900

report sce-24005005 from 2005-04-21

# Horizontal force H 800 KN

ł			
l	e	,	2
ł	Ĕ	-	-
l	=		ŝ
l	õ	ĩ	Ś
Į	Ľ	ι	i
I	۵	ł	-
I	۵	۲	
ł	\$	1	Ç
I	Ĩ	1	1
I	1	-	
l	-	1	
ţ	2	2	-
I	Č	-	5
1	2	ž	;
i	4	4	

tension strength 0,3 Mpa

{ 13	= 0	
10.4	ñ	
Citer Citer	Decre	
~		-

	111.6	106,7	308,2	626,4	342,6	(85,8)	68,5			2361,8	4819,5 4825,80
	10		12	13	4	15	16			Sum	Sum walimiddle ist Sum walimiddle soll
proportion Q/H Position of the resulting force N	7% inside the cross section	11% inside the cross section	11% inside the cross section	6% inside the cross section	23% inside the cross section	10% inside the cross section	15% inside the cross section	15% inside the cross section	3% inside the cross section		
M [kNm]	51,06	96,18	83,69	16,57	186,26	46,51	110,86	202,18	3,90		
e [m]	0,208	0,313	0,324	0,194	0,325	0,370	0,238	0,525	0,339		_
N [kN]	245,50	307,30	258,30	85,40	573,10	125,70	465,80	385,10	11,50	2457,7	
Q [kN]	50,00	74,00	72,40	38,40	154,90	67,60	102,60	103,50	20,80	684,2	
[m] Q	0,240	0,240	0,240	0,240	0,175	0,240	0,240	0,240	0,240		_
۲. [m]	1 00	1.25	1.25	1,00	1,75	1.40	1.25	1,75	1.00		
wall		N	(m	4	2	9	4	8	6	Sum	

M [KNm]         proportion $Q/H$ Position of the resulting force N         10         248,5           5 $164,09$ 7% inside the cross section         11         248,5           5 $164,09$ 12% inside the cross section         11         248,5           6 $17,10$ 3% inside the cross section         11         254,8           6 $17,10$ 3% inside the cross section         12         254,8           713,10         3% inside the cross section         12         254,8           6 $344,60$ 6% inside the cross section         14         308,9           703,12 $534,60$ 6% inside the cross section         14         308,9           703,90 $17\%$ inside the cross section         16         23,1           713,1 $1\%$ inside the cross section         16         23,1           714,1 $1\%$ inside the cross section         16         23,1	
5 $94,18$ 7% inside the cross section         10 $248,5$ 5 $164,09$ 12% inside the cross section         11 $33,1$ 5 $153,90$ 12% inside the cross section         12 $33,1$ 6 $17,10$ 3% inside the cross section         12 $248,5$ 6 $34,60$ 25% inside the cross section         13 $713,1$ 7 $34,60$ 25% inside the cross section         14 $963,2$ 6 $306,67$ $17\%$ inside the cross section         16 $23,7$ 7 $306,67$ $17\%$ inside the cross section         16 $23,7$ 6 $-1,41$ $1\%$ outside the cross section         16 $23,7$	[kN]
5         164,09         12% inside the cross section         11         33,1           5 $153,90$ 12% inside the cross section         12 $254,8$ 9 $17,10$ 3% inside the cross section         13 $713,1$ 5 $344,60$ 25% inside the cross section         14 $963,2$ 0 $23,12$ 6% inside the cross section         15 $963,2$ 5 $306,67$ $17\%$ inside the cross section         16 $23,17$ 6 $306,67$ $17\%$ inside the cross section         16 $23,17$ 5 $-1,41$ $1\%$ outside the cross section $16$ $23,17$	280,30
5         153,90         12% inside the cross section         12         254,8           9 $17,10$ 3% inside the cross section         13 $713,1$ 5 $344,60$ 25% inside the cross section         14 $303,9$ $713,1$ 0 $33,12$ 6% inside the cross section         15 $963,2$ $363,2$ 5 $306,67$ $17\%$ inside the cross section         16 $23,17$ $263,2$ 6 $306,67$ $17\%$ inside the cross section         16 $23,7$ $23,7$ 6 $306,67$ $17\%$ inside the cross section $16$ $23,7$ $23,7$ 6 $306,67$ $17\%$ inside the cross section $16$ $23,7$ 6 $-1,41$ $1\%$ outside the cross section $2545,3$	386,10
9         17,10         3% inside the cross section         13         /13,11           5         344,60         25% inside the cross section         14         308,9           0         38,12         6% inside the cross section         15         963,2           5         306,67         17% inside the cross section         16         23,7           6         306,67         17% inside the cross section         16         23,7           6         -1,41         1% outside the cross section         26         23,7           6         -1,41         1% outside the cross section         25,45,3         23,45,3	353,80
5         344,60         25% inside the cross section         14         308,10           0         38,12         6% inside the cross section         15         963,2           5         203,90         17% inside the cross section         16         23,7           6         -1,41         1% outside the cross section         26,7         24,53           6         -1,41         1% outside the cross section         23,7           7         17% outside the cross section         23,7         23,7           6         -1,41         1% outside the cross section         23,7	35,70 (
0         38,12         6% inside the cross section         15         963,2           5         203,90         17% inside the cross section         16         23,7           5         306,67         17% inside the cross section         16         23,7           5         -1,41         1% outside the cross section         25,45,3	632,30 0,
5         203,90         17% inside the cross section         16         23,1           5         306,67         17% inside the cross section         17% outside the cross section         2545,3	60,50 0,6
5         306,67         17% inside the cross section           5         -1,41         1% outside the cross section           2545,3	529,60 0,3
5 -1,41 1% outside the cross section 2545,3 2545,3	468,20 0,6
2545,3	-2,50 0,56
	2744
Sum wallbase ist 5289,3	

proportion Q/H Position of the resulting force N M [kNm] e [m] N [kn] Q [kN] [m] D Section 2.625 m [ [m]

wall

Page 17 / 20

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY

Annex AH1/H-Pos/H0 - 900

22,00 27,54 7,79 -18,47 -16,37 50,17 50,17 50,17 50,17 -33,27 0,112 0,038 -0,153 0,050 0,050 0,133 -0,458 0,114 193,00 245,90 205,00 205,00 521,60 521,60 377,20 337,20 50,80 50,80 0,240 0,240 0,240 0,240 0,240 0,240 0,240 0,240 0,240  $\frac{1,00}{1,25}$   $\frac{1,25}{1,75}$   $\frac{1,75}{1,75}$   $\frac{1,75}{1,25}$ ഗ N 4 10 ŝ തത Sum

1% 100% 3% 25% 17% 17% 12% 12% 6% base 11% 6% 15% 15% 10% 2% middle 10% 6% 5% 13% 13% 13% 10% 7% cap wall - 01 10 14 10 10 - 00 00

Sum

÷

7% inside the cross section
10% inside the cross section
6% inside the cross section
5% inside the cross section
13% inside the cross section
15% inside the cross section
4% inside the cross section

4911,5 4825,80	Sum wallcap ist Sum wallcap soll
2686,4	Sum
161,8	16
739	15
407,8	14
601,1	13
380,2	12
228	
168,5	10

Normal toce N	cap	middle	base
	193,00	245,50	280,30
	245,90	307,30	386,10
	205,00	258,30	353,80
	120,70	85,40	35,70
	521,60	573,10	632,30
	174,10	125,70	60,50
	377,20	465,80	529,60
	336,80	385,10	468,20
	50,80	11,50	-2,50
	2225,10	2457,70	2744,00

Annex AH1/H-Pos/H0 - 900

# Horizontal force H 900 KN

tension strength 0,3 Mpa

NON-LINEAR RESULTS

1,375 m	
Section	

										0	0 4825,80
	0	e	51 :	13	14	15	9			Sum	Sum wallmiddle ist Sum wallmiddle soll
Position of the resulting force N	inside the cross section										
proportion Q/H		10//NIQ#	10//NC#		10/VIC#	i0//i0#		10//IQ#	#DIV/0	I	
M [kNm]	0,00	0,00	0,00	00'00	0'00	0,00	0,00	0,00	00'0		
e [m]										0	
N IKNI										0	
Q IKNI											
[m] Q	0,240	0,240	0,240	0,240	0,175	0,240	0,240	0,240	0,240		
L [m]	1.00	1.25	1,25	1,00	1,75	1,40	1,25	1,75	1.00		
liew	-	2	e	4	9	9	4	8	6	Sum	

		255,8	GZ'L	250.3	104	789	1064	21,3			2635,65	5565,321 4825,80
		0		22	<u>0</u>	14	5	16			Sum	Sum wallbase ist Sum wallbase soll
	proportion Q/H Position of the resulting force N	7% inside the cross section	12% inside the cross section	12% inside the cross section	3% inside the cross section	26% inside the cross section	6% inside the cross section	17% inside the cross section	17% inside the cross section	1% outside the cross section		
	M [kNm]	104,26	177,70	172,22	17,64	384,48	42,65	223,72	334,03	-0,94		
	e [m]	0,355	0,435	0,445	0,468	0,565	0,630	0,405	0,665	7,280		
	N [kN]	293,70	408,50	387,00	37,70	680,50	67,70	552,40	502,30	-0,13	2929,671	
	Q [KN]	47,50	80,90	81,30	19,90	177,10	44,80	114,40	114,60	9,46	689,96	
	D [m]	0,240	0,240	0,240	0,240	0,175	0,240	0,240	0,240	0,240		
25 m	L[m]	1,00	1,25	1,25	1,00	1.75	1,40	1,25	1,75	1,00		
Section 0,1	wall	-	2	3	4	2	9	2	8	6	Sum	

Section 2.625 m

wall

proportion Q/H Position of the resulting force N M [kNm] e [m] N [kn] Q [kN] [ɯ] o L [m] Page 19 / 20

 $\langle - \rangle$ 

Annex AH1/H-Pos/H0 - 900

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY

	2367,2	702,90			Sum
-0,482 -26,17	54,30	29,70	0,240	1,00	o
0,235 85,02	361,80	103,20	0,240	1,75	8
0,140 53,63	383,10	86,10	0,240	1,25	7
-0,094 -18,15	193,10	90,90	0,240	1,40	9
0,045 25,12	558,20	165,20	0,175	1.75	5
-0,174 -22,72	130,60	44,90	0,240	1.00	4
0,025 5,56	222,40	67,90	0,240	1,25	3
0,103 26,69	259,10	69,40	0,240	1,25	2
0,105 21,48	204,60	45,60	0,240	1.00	

inside the cross section								
10%	10%	6%	24%	13%	12%	15%	4%	

6% inside the cross section

2611,7	Sum
165	16
783,1	15
390,8	14
604,6	13
380,8	12
190,8	<b>*</b>
D DA	10

wall	cap	middle	base
<del>~-</del>	%9	10//NIC#	%1
N	10%	10//IQ#	12%
m	40%	#DIV/01	12%
4	9%9	10//NQ#	3%
ы	24%	10//JIC#	26%
g	13%	#DIV/01	6%
~	12%	10//IC#	47%
~	15%	10//IC#	%11
a	4%	#DIV/01	4%
m	100%	#DIV/01	100%

Page 20 / 20
HNICAL UNIVERSITY MUNICH	ARTMENT OF CIVIL ENGINEERING AND GEODESY	TUTE OF CONCRETE AND MASONRY STRUCTURES
TECHNIC/	DEPARTN	INSTITUTI

Annex AH1-mod/H-pos/middle

( )

House 1-mod; H positive

Shear-Walls

N positive Tension N negative Compression Q positive compared to the direction of the horizontal force H Q negative compared to the direction of the horizontal force H e negative compared to the direction of the horizontal force H

1									
[E] 0		Ē	<b>1</b> ر2	L [m]	N [KN]	M [kNm]	a [kN]	Propertion Q/H	Position of the resulting force N
0000'0		0,050	0,500	1,000	-75,698	-3,79	-1,90	-2%	inside the cross section
000'0		0,118	0,875	1,750	-233,866	-27,55	-7,48	-7%	inside the cross section
0,000	F	0,075	0,625	1,250	-155,353	-11,70	-6,17	-6%	inside the cross section
0,000		0,071	0,500	1,000	-91,847	-6,50	-0,09	%0	inside the cross section
5,500		0,362	1,200	2,400	-160,238	-58,04	-32,84	-33%	inside the cross section
10,000		0,139	0,500	1,000	-59,031	-8,22	-5,70	-6%	inside the cross section
10,000		0,114	0,875	1,750	-257,876	-29,42	-9,88	-10%	inside the cross section
10,000		0,066	0,875	1,750	-323,340	-21,37	-16,71	-17%	inside the cross section
4,250		0,170	1,375	2,750	-415,678	-70,62	-21,94	-22%	inside the cross section
				uns	-1772,93	Sum	-102,71		
[m] D		e [m]	L/2	ר [m] ר	IN [kv]	M [kNm]	Q [KN]	Proportion Q/H	Position of the resulting force N
0,000	_	0,108	0,500	1,000	-92,686	-10,04	-5,63	-3%	inside the cross section
0,000	1	0,253	0,875	1,750	-229,985	-58,16	-15,62	-8%	inside the cross section
0,000	-	0,147	0,625	1,250	-166,126	-24,35	-10,79	-5%	inside the cross section
0,000		0,160	0,500	1,000	-81,358	-12,98	-4,08	-2%	inside the cross section
5,500		1,034	1,200	2,400	-117,874	-121,89	-55,92	-28%	inside the cross section
10,001	175	0,392	0,500	1,000	-38,566	-15,10	-9,84	-5%	inside the cross section
10,00(	10	0,248	0,875	1,750	-253,245	-62,78	-18,51	~6~	inside the cross section
10,001	10	0,144	0,875	1,750	-362,413	-52,08	-29,25	-15%	inside the cross section
4,250	1.20	0,339	1,375	2,750	431,498	-146,36	41,82	-21%	inside the cross section
				mns	-1773,75	Sum	-191,47		
[m] Q		e [m]	77	L. [m]	I [kn]	[ww] M	a [kN]	Propartion Q/H	Position of the resulting force N
0,000	<u> </u>	0,152	0,500	1,000	-111,224	-16,89	-9,84	-3%	inside the cross section
000'0		0,405	0,875	1,750	-226,813	-91,79	-25,11	-8%	inside the cross section
0,000		0,217	0,625	1,250	-177,013	-38,32	-16,04	-5%	inside the cross section
0.000		0.294	0.500	1.000	-68.398	-20,14	-8.76	-3%	inside the cross section

transverse walls



%0	4954,90	4955,881	
discrepancy in %	sumV target	sumV actual	-3182,13
			-495,46
			-429,31
			-542,93
			-401,60
			-475,93
			-224,48
			-612,42
			N [KN]

outside the cross section outside the cross section

-23% -4%

-67,65 -13,44

-134,44 -19,74

-102,687 -18,919

1,200 2,400 0,500 1,000

5,500 1,309 10,000 1,044

2,509

Wand 6 Wand 9 Page 1/3

TECHNIC DEPARTM		CIVIL EN LORETE	VICINICH VICINICH	ANG AN	D GEOL	DESY STURES				Annex AH1-mod/H-pos/middle			report sce-2.	1005005 from 2005-04-21
	5			)							-			
Wand 7	1,274	10,000	0,399	0,875	1,750	-249,318	-99,43	-28,84	-10%	inside the cross section	-524,15			
Wand 8	1,085	10,000	0,210	0,875	1,750	405,068	-85,19	-43,66	-15%	inside the cross section	-3181,72 Sur	nV actual	sumV target	discrepancy in %
Wand 5	1,882	4,250	0,507	1,375	2,750	-450,025	-228,16	-64,43	-21%	inside the cross section		4991,181	4954,90	1%
1					uns Sum	-1809,46	Sum	-277,77						
										4444-44-4				
<u>ቶ</u>	400,000													
Wall	e	DIm	e [m]	1/2	L [m]	N JKNJ	M [kNm]	Q [kN]	^o ropartion QH	Position of the resulting force N	N [KN]			
Wand 5	0 687		0.187	0.500	1.000	-132.491	-24,83	-14,90	4%	inside the cross section	497,64			
Intend 9	1 424	000 0	0.549	0.875	1 750	-227.538	-124.92	-35.12	-9%	inside the cross section	-143,21			
	1,764	0000	0 280	0.625	1 260	-188 550	-54 47	-22.38	-6%	inside the cross section	428,71			
s DREVY	410,0		0.487	0 500	1000	-54 388	-26.10	-13.69	3%	inside the cross section	-394,07			
VVanu +	2 25.5	5 500	1 158	1 200	2.400	-104.614	-122.22	-67.64	-17%	inside the cross section	-515,80			
Afond 0	20010	1000	1 785	0 500	1 800	-9.026	.16 12	-13.87	-3%	outside the cross section	-635,29			
VVABIU 7	1 415	10 000	0.537	0.875	1 750	250.511	-134.50	-39.72	-10%	inside the cross section	-552,27			
Almond o	1 1/15	10.000	1 574	0.875	122	453 283	-129 93	-61 29	-15%	inside the cross section	-3156,98 Sur	mV actual	sumV target	discrepancy in %
		10000	0.650	1 275	2 750	475,850	313.68	60.09	-23%	inside the cross section	×	5063,229	4954,90	2%
	4°n24	4,230	lensin	1001		1400 26	201212	120 20						
						c7'9891-		60'007						
<u></u> *	500,000													
				5	1-1-1	AI TLAST	M [Lhbor]	C (PAI)	Proportion Q/H	Position of the resulting force N	N IKN			
	е 	m lul	[ш] а	1000	1 1 1 1 1	104 E20	THIMIN IN	00 82	787	inside the cross section	-430.53			
Wand 1	0,724	0,000	0,224	0,000	10001	101,000	100-12	00 07	0%.0	inside the cross section	-95 19			
Wand 2	1,463	000'0	0,358	0,8/0	1,130	-240,304	-144,01	30.48	%9-	inside the cross section	-400,46			
- c nilexy	1 000	0000	0 200	0 200	1 000	46.328	-23.56	-15.78	-3%	outside the cross section	-388,94			
Wisnd 6	2 256	2 500	1 056	1 200	2.400	-95.671	-101.06	-61,24	-12%	inside the cross section	497,61			
Wand 9	1331	10.000	0.831	0.500	1.000	8.044	-5,68	-8,34	-2%	outside the cross section	-723,36			
Wand 7	1.450	10.000	0,575	0,875	1,750	-272,151	-156,35	-47,85	-10%	inside the cross section	-579,64			:
Wand 8	1,212	10,000	0,337	0,875	1,750	-515,189	-173,67	-87,14	-17%	inside the cross section	-3116,33 Sul	mV actual	sumV target	discrepancy in %
Wand 5	2 117	4 750	0 742	1.375	2.750	-528,834	-392.45	-117,90	-24%	inside the cross section		-5194,726	4954,90	5%
					Sum	-2078,39	Sum	-433,77						
Ŧ	600,000													
Wall	65	[ɯ] G	e [m]	L/2	L [m]	N [kN]	M [kNm]	a [kN]	Proportion Q/H	Position of the resulting force N	IN IKNI			
Wand 1	05/10	0,000	0,250	0,500	1,000	-181,756	-45,38	-29,04	-5%	inside the cross section	-343,64			
Wand 2	1,483	0,000	0,608	0,875	1,750	-265,165	-161,30	47,98	-8%	inside the cross section	-37,40			
Wand 3	1,007	0,000	0,382	0,625	1,250	-223,307	-85,26	-36,35	-6%	inside the cross section	-337,35			
Wand 4	1,047	0,000	0,547	0,500	1,000	-44,980	-24,61	-16,18	-3%	outside the cross section	-378,28			
Wand 6	2,254	5,500	1,054	1,200	2,400	-111,509	-117,49	-69,35	-12%	inside the cross section	-458,47			
Wand 9	1,695	10,000	1,195	0,500	1,000	-5,507	-6,58	-9,82	-2%	outside the cross section	21111-			
Wand 7	1,470	10,000	0,595	0,875	1,750	-292,512	-173,93	-54,45	%8-			mV actual	annli tarnat	discrenancy in %
Wand 8	1,261	10,000	0,386	0,875	1,750	-559,136	-215,60	22'01-	4 <u>0</u> [-			6105 828	495A 90	201
Wand 5	2,153	4,250	0,778	1,375	2,750	-576,501	448,40	96'921-	-43%			22050212-		
					Ling Ling S	-2260,37	uns.	50'012		1				
Ŧ	700,000													
Wall	ø	[w] d	e [m]	L12	۲ [۳]	N [kN]	M [kNm]	a [kN]	Proportion Q/H	Position of the resulting force N	N [KN]			
Wand 1	0,782	000 0	0,282	0,500	1,000	-208,979	-58,97	-38,98	-6%	inside the cross section	-279,23			
Wand 2	1,493	000'0	0,618	0,875	1,750	-292,919	-180,99	-53,32	-8%	inside the cross section	1,13			
-														

Page 2/3

TECHNIC	AL UNIVE	ERSITY	MUNICH		() [ [					Annex AH1-mod/H-pos/middle			report sce-2	4005005 from 2005-04-:
DEPAKI		UNIL E NORETE	INGINEE AND M	IRING AL	NU GEL	JCTURES								
Wand 3	1.017	0.000	0,392	0,625	1,250	-253,692	-99,52	43,74	-6%	inside the cross section	-289,44			
Wand 4	0.961	000'0	0,461	0,500	1,000	40,823	-18,81	-15,59	-2%	inside the cross section	.368,28			
Wand 6	2,248	5,500	1,048	1,200	2,400	-100,153	-104,95	-68,28	-10%	inside the cross section	427,15			
Wand 9	1,511	10,000	1,011	0,500	1,000	-3,850	-3,89	-5,56	-1%	outside the cross section	-869,87			
Wand 7	1,487	10,000	0,612	0,875	1,750	-322,845	-197,52	-63,14	-9%	inside the cross section	-623,95			2
Wand 8	1,340	10,000	0,465	0,875	1,750	-587,186	-272,75	-124,94	-18%	inside the cross section	-2856,78	sumV actual	sumV target	discrepancy in %
Wand 5	2,199	4,250	0,824	1,375	2,750	-648,392	-534,08	-172,95	-25%	inside the cross section		-5315,621	4954,90	%4
					sum	-2458,84	Sum	-586,51						
<u>1</u>	800.008													
Wall	в	D [m]	e [m]	L/2	L. [m]	N [KN]	M [kNm]	a [kN]	Proportion Q/H	Position of the resulting force N	N KN			
Wand 1	0,805	0'000	0,306	0,500	1,000	-229,939	-70,41	45,12	-6%	inside the cross section	-190,42			
Wand 2	1,506	000'0	0,631	0,875	1,750	-321,299	-202,84	-61,36	-8%	inside the cross section	15,78			
Wand 3	1,026	000'0	0,401	0,625	1,250	-283,994	-113,80	-51,35	-6%	inside the cross section	-181,18			
Wand 4	0,959	000'0	0,459	0,500	1,000	-39,272	-18,02	-15,82	-2%	inside the cross section	-343,59			
Wand 6	2,237	5,500	1,037	1,200	2,400	-104,186	-108,03	-73,08	-9%	inside the cross section	-368,24			
Wand 9	1,423	10,000	0,923	0,500	1,000	-3,009	-2,78	-5,65	-1%	outside the cross section	-904,57			
Wand 7	1,502	10,000	0,627	0,875	1,750	-350,773	-220,07	-73,35	%5-	inside the cross section	-627,02			
Wand 8	1.386	10.000	0.511	0.875	1.750	-600.816	-306,78	-131,51	-16%	inside the cross section	-2599,23	sumV actual	sumV target	discrepancy in %
	000	N DEV	330 0	1 274	0 7EN	705 377	\$11 23	-2nd ng	.26%	inside the cross section		-5247,849	4954,90	6%
d brew	2,230	4,2,50	icco'n	C/2'1	ne '7	170'01 1-	70'110-	on"+nz-	0/ 12-					
					Sum	-2648,61	ams	-661,30						
Ŧ	900,000													
										Dorbion of the monthlow forms N	NI READ			
IIII	4	E	e [ll]		E	N [KN]	M [KNm]					-		
Wand 1	0,811	0,000	0,311	0,500	000	-251,591	-78,35	47,61	\$ <u>\$</u>		00'00'-			
Wand 2	1,513	0000	0,638	0,875	1,750	-349,814	-223,15	-58,80	-8%	inside the proce earlier	-0.0			
Wand 3	1,032	0,000	0,41/	070 0	nez'l	107'01?	04'121-	00,10	4 P		10 600			
Wand 4	0,962	000'0	0,462	0,500	1,000	-39,765	-18,38	HU, 11-	%7×		10'070			
Wand 6	2,232	5,500	1,032	1,200	2,400	-113,533	21,111-	-92,10	\$P		21,120			
Wand 9	1,319	10,000	0,819	0,500	1,000	-2,743	-2,25	-7,17	-1%	outside the cross section	70,008-			
Wand 7	1,513	10,000	0,638	0,875	1,750	-378,073	-241,02	-81,07	%6-		70'120-			
Wand 8	1,409	10,000	0,534	0,875	1,750	-629,026	-335,90	-138,39	-15%	inside the cross section	-2498,04	sumv actual	sumv target	aiscrepancy m //
Wand 5	2,251	4,250	0,876	1,375	2,750	-775,266	-678,82	-228,27	-25%	inside the cross section		-5351,107	4954,90	8%
•					Sum	-2853,07	Sum	-728,54						
1														
	1000,0001													
Wall	63	[m] Q	e [m]	L12	ر[m] د	N [kN]	M [kNm]	Q [kN]	Proportion Q/H	Position of the resulting force N	N [KN]			
Wand 1	0.816	0.000	0.318	0.500	1,000	-267,373	-84,92	49,96	-5%	inside the cross section	-118,84			
Wand 2	1.522	0.000	0.647	0.875	1.750	-378,015	-244,42	-77,85	-8%	inside the cross section	-11,08			
Wand 3	1.038	0.000	0.413	0.625	1.250	-345,098	-142,39	-65,22	-7%	inside the cross section	-1040,20			
Wand 4	0.974	0.000	0.474	0,500	1,000	-40,409	-19,16	-17,96	-2%	inside the cross section	-298,94			
Wand 6	2.227	5.500	1.027	1.200	2,400	-122,719	-125,98	-94,17	-9%	inside the cross section	96'605-			
Wand 9	1.157	10.000	0,657	0,500	1,000	-1,777	-1,17	00'6-	-1%	outside the cross section	-655,05			
Wand 7	1,526	10,000	0,651	0,875	1,750	403,263	-262,44	-88,40	-8%	inside the cross section	-47,98			
Wand 8	1,435	10,000	0,560	0,875	1,750	-645,414	-361,63	-143,86	-14%	inside the cross section	-2482,04	sumV actual	sumV target	discrepancy in %
Wand 5	2.274	4.250	0.899	1.375	2.750	-832,730	-748,79	-253,71	-25%	inside the cross section		-5518,834	4954,90	11%
					ang	-3036.80	Ens	-800.11						
					~		•							

report sce-24005005 from 2005-04-21

Annex AH1-mod/H-pos/middle

(__)

Page 3 / 3

Annex AH1/H-neg/H -100 up to -900

report sce-24005005 from 2005-04-21

H-LAST -100 KN

Non-linear results Tension strength 0,3 Mpa

					13		13	<u>9</u>			Sum	Sum Wallmiddle ist Sum Wallmiddle soll
	Proportion Q/H Position of the resulting force N	13% inside the cross section	8% inside the cross section	8% inside the cross section	13% inside the cross section	19% inside the cross section	6% inside the cross section	10% inside the cross section	17% inside the cross section	5% inside the cross section		
	M [kNm]	4,23	11,61	12,24	5,91	22,07	21,66	10,88	35,45	8,26		
	(W	0,107	0,068	0,093	0,055	0,085	0,150	0,057	0,143	0,082		
	N [kN] e l	39,50	170,70	131,60	107,50	259,70	144,40	190,90	247,90	100,70	1392,9	
	I [NV]	8,79	5,91	5,91	9,87	14,20	4,35	7,74	12,60	3,82	74,19	
	5 [m] 0	0,240	0.240	0,240	0,240	0,175	0,240	0,240	0,240	0,240	┢┛	
	r [w]	1.00	1.25	1,25	1,00	1,75	1,40	1,25	1,75	1,00		
Section 1,375m	Wall		2	0	4	5	9	<u> </u>	8	6	Sum	

774,4 606,7 437,1 598,6 236,3 336,5 4825,6 4825,80

3432,7

781,2 601,7 423,5 421,2 582,4 224,5 331

012222488

3375,5

4825,2 4825,80

Sum Wallbase ist Sum Wallbase soll

Sum

Section 0.125m						
Wall		a (kn)	N [kN] e [m]		M [kNm] Pr	oportion Q/H Position of the resulting force N
	1.00 0.240	8,41	32,80	0,369	12,10	13% inside the cross section
2	1,25 0,240	5,12	182,70	0,116	21,19	8% inside the cross section
3	1.25 0,240	5,46	140,30	0,143	20,06	8% inside the cross section
4	1.00 0,240	10,20	123,50	0,078	9,63	15% inside the cross section
5	1,75 0,175	12,50	252,80	0,136	34,38	19% inside the cross section
9	1,40 0,240	4,63	148,00	0,163	24,12	7% inside the cross section
	1,25 0,240	4,65	196,50	0,115	22,60	7% inside the cross section
8	1,75 0,240	12,00	264,10	0,196	51,76	18% inside the cross section
6	1,00 0,240	4,11	109,00	0,077	8,39	6% inside the cross section
Sum		67,08	1449,7			
	I					

11 Trong	L [m] D [m] Q [KN] 1,00 0,240 1,25 0,240 1,25 0,240 1,00 0,240 1,75 0,175	6,92 5,89 5,69 4,20 16,10	N [kN] e [m] 47,00 171,10 131,80 94,90 295,50	-0,046 0,028 0,042 0,027 0,027	M [kNm] P -2,16 4,79 5,54 2,56 2,56 2,56	Proportion Q/H Position of the resulting force N 10% inside the cross section 8% inside the cross section 8% inside the cross section 6% inside the cross section 2.3% inside the cross section
ŝ	1,40 0,240	5,26	140,60	0,131	18,42	7% inside the cross section
4	1 25 0 240	8.32	192.30	0.015	2,88	12% inside the cross section

Page 1 / 18

767 570,4 442,9 449,8 602,7 249 249 335,1

0 T C C Z Z Z Z Q

8	2,75	0,240	12,40	243,70	0,082	19,98
6	1,00	0,240	5,92	91,80	0,076	6,98
Sum			12	0,7 1408,7		

report sce-24005005 from 2005-04-21

)

Annex AH1/H-neg/H -100 up to -900

12.40         12.40         243,70         0.082         19.98         18% inside the cross section           ,240         5,92         91,80         0,076         5,98         8% inside the cross section           70,7         1408,7         70,7         1408,7         5,98         9%	0,240 12,40 243,70 0,082 19,98 18% inside the cross section
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	-------------------------------------------------------------

 3416,9	4825,6 4825,80
Sum	Sum Walicap ist Sum Walicap soli

4825,6 4825,80	

Non										
	13%	8%	8%	15%	19%	7%	%∠	18%	6%	100%
base										
middle	13%	8%	8%	13%	19%	%9	%01	17%	5%	100%
cap	10%	8%	8%	8%	23%	<u>%</u> ∠	12%	18%	8%	100%
Wall	<b></b>	~	~~ ~~	4	<u>م</u> ا	ср С	~	~	6 6	Sum

Normal force &		le base
	47,00 39,	50 32,80
	171,10 170,	70 182,70
	131,80 131,	60 140,30
	94,90 107,	50 123,50
	295,50 259,	70 252,80
	140,60 144,	40 148,00
	192,30 190,	90 196,50
	243,70 247,	90 264,10
	91,80 100	70 109,00
	1408,70 1392,	90 1449,70

Annex AH1/H-neg/H -100 up to -900

H-LAST -200 KN

Tension strength 0,3 Mpa Non-linear results

	esulting force N	ection	section	tection	kection	tection	section	tection	section	section	Sum	Sum Wallmiddle
	Proportion Q/H Position of the r	9% inside the cross s	8% inside the cross s	8% inside the cross s	11% inside the cross s	18% inside the cross s	11% inside the cross s	12% inside the cross s	17% inside the cross s	6% inside the cross s		
	M [kNm]	8,47	24,03	24,39	12,11	45,06	39,18	23,80	71,54	14,95		
	(m)	0,353	0,150	0,197	0,099	0,189	0,232	0,148	0,288	0,117		
	N [KN] e	24,00	160,20	123,80	122,30	238,40	168,90	160,80	248,40	127,80	1374,6	
	[kv]	14,70	12,80	13,50	17,00	28,60	17,90	19,20	26,60	10,30	160,6	
	o E	0,240	3,240	3,240	3,240	0,175	0,240	0,240	0.240	0,240	-	
	r [m]	1,00	1,25	1,25	1,00 1	1,75 (	1,40 (	1,25 (	1.75 (	00.1		
Section 1,375m	Wall	1	2	3	4	5	8	7	8	0	Sum	

833,4 646,2 453,8 400 611,4 138 368,5

3451,3

4825,9 4825,80

Section 0.1	25m						
Wall	۲ ا	) [ʷ] ɑ	Q [KN]	N [kN] e [m]		M [kNm] H	Proportion Q/H Position of the resulting force N
F	1,00	0,240	12,50	10,00	0,163	1,63	8% inside the cross section
2	1,25	0,240	12,10	169,40	0,242	40,99	8% inside the cross section
3	1,25	0,240	13,10	129,70	0,314	40,73	9% inside the cross section
4	1,00	0,240	17,00	145,90	0,137	19,99	11% inside the cross section
2	1,75	0,175	27,00	226,70	0,316	71,64	18% inside the cross section
ę	1,40	0,240	17,50	181,90	0,277	50,39	12% inside the cross section
<u></u>	1,25	0,240	15,80	156,20	0,272	42,49	10% inside the cross section
8	1,75	0,240	26,20	264,00	0,395	104,28	17% inside the cross section
ъ	1,00	0,240	10,30	143,20	0,132	18,90	7% inside the cross section
Sum			151,5	1427			

Nali	L [m] D [m] Q [	IN	N [kN] e [m]		M [kNm]	Proportion Q/H Position of the resulting force
1	1,00 0,240	11,80	36,90	-0,041	-1,51	8% inside the cross section
2	1,25 0,240	11,90	164,60	0,061	10,04	8% inside the cross section
3	1,25 0,240	12,30	127,40	0,071	9,05	8% inside the cross section
4	1,00 0,240	10,90	100,70	0,044	4,43	7% inside the cross section
5	1.75 0,175	30,00	280,00	0,109	30,52	20% inside the cross section
9	1,40 0,240	18,80	153,00	0,181	27,69	12% inside the cross section
7	1,25 0,240	18,10	172,70	0,052	8,98	12% inside the cross section

3400,7

4827,7 4825,80

Sum Wallbase ist Sum Wallbase soll

Sum

849,2 648,8 447,9 376,3 595,8 109,6 373,1

Page 3 / 18

Annex AH1/H-neg/H -100 up to -900

report sce-24005005 from 2005-04-21

9 1,00 0,240 12,10 110,00 0,092 10,12			1390,5	151,4		
	10,12	0,092	110,00	12,10	0 0,240	9 1,0
D 1472 0 340 35 50 1 345 1 39 48 1 39 48 1	39,48	0,161	245,20	25,50	5 0,240	8 1,72

17% inside the cross section 8% inside the cross section

3435,6 4826,1 4825,80 Sum Wallcap ist Sum Wallcap soll Sum

Normal force N										
	8%	8%	9%6	11%	18%	12%	10%	17%	7%	100%
base										
middle	6%	8%	8%	11%	18%	11%	12%	47%	6%	100%
cap	8%	8%	8%	2%	20%	12%	12%	17%	8%	100%
Wall		~	~~ ~~		ശ	ø	~	8	5	Sum

al force N	ap cap mid	lle bas
	36,90 24	,00 10,
	164,60 160	,20 169,
	127,40 123	80 129,
	100,70 122	30 145,
	280,00 236	40 226,
	153,00 166	,90 181,
	172,70 160	80 156,
	245,20 248	40 264,
	110,00 127	80 143,
	1390,50 1374	,60 1427,

Annex AH1/H-neg/H -100 up to -900

report sce-24005005 from 2005-04-21

Ř
900 -300
AST
Ŧ

Non-linear results Tension strength 0,3 Mpa

1.375m	
Section	

	10		12	13	14	15	16			Sum
Proportion Q/H Position of the resulting force N	6% outside the cross section	8% inside the cross section	8% inside the cross section	10% inside the cross section	18% inside the cross section	14% inside the cross section	12% inside the cross section	16% inside the cross section	7% inside the cross section	
M [kNm]	9,18	36,55	34,46	18,74	65,56	57,48	34,36	103,35	22,25	
e [m]	0,510	0,245	0,292	0,135	0,298	0,294	0,257	0,408	0,142	
n [kn]	18,00	149,20	118,00	138,80	220,00	195,50	133,70	253,30	156,70	1383,2
Q [kN]	14,60	20,90	21,00	25,50	44,10	35,60	29,80	39,20	18,20	248,9
[m] Q	0,240	0,240	0,240	0,240	0,175	0,240	0,240	0,240	0,240	
[m]	1,00	1,25	1,25	1,00	1,75	1,40	1,25	1,75	1,00	
Wall	~	2	e	4	2	9	2	8	6	Sum

4825,5 4825,80

Sum Wallmiddle ist Sum Wallmiddle soll

3442,3

881,1 684,8 462 361,2 621,3 32,5 32,5 399,4

			906.2	696,7	457,8	327,6	4122	604,3	-13.9			3389,9	
			10	<del>4</del>	12	13	14	15	16			Sum	
	Broanting O(H Breiting of the resulting force N		5% outside the cross section	9% inside the cross section	9% inside the cross section	11% inside the cross section	18% inside the cross section	14% inside the cross section	11% inside the cross section	17% inside the cross section	8% inside the cross section		
	AA PUNIMT		10,28	62,01	58,85	31,88	105,42	80,88	56,19	148,78	30,99		
	í mľ	fiiil a	2,040	0,398	0,475	0,185	0,516	0,371	0,475	0,544	0,171		
	AJ FEAR	IN MAN	5,04	155,80	123,90	172,30	204,30	218,00	118,30	273,50	181,20	1452,34	
	LIAN C	K [NN]	10,70	20,10	20,60	24,80	42,20	32,90	25,50	38,90	17,70	233,4	
	1	ក ព្រៀ	0,240	0,240	0,240	0,240	0,175	0,240	0,240	0,240	0,240		
MC2		L [m]	1,00	1,25	1,25	1,00	1,75	1,40	1,25	1,75	1,00		
Section U.1	1-11	vali	<b>~</b>	2	3	4	5	9	2	8	o	mn	

Section 2.625m

4842,24 4825,80

Sum Wallbase ist Sum Wallbase soll report sce-24005005 from 2005-04-21

Annex AH1/H-neg/H -100 up to -900

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY

Proportion Q/H Position of the resulting force N	6% outside the cross section	8% inside the cross section	8% inside the cross section	10% inside the cross section	18% inside the cross section	14% inside the cross section	12% inside the cross section	16% inside the cross section	7% inside the cross section	
M [kNm]	9,18	36,55	34,46	18,74	65,56	57,48	34,36	103,35	22,25	
e [m]	0,510	0,245	0,292	0,135	0,298	0,294	0,257	0,408	0,142	
N [kN]	18,00	149,20	118,00	138,80	220,00	195,50	133,70	253,30	156,70	1383,2
a [kN]	14,60	20,90	21,00	25,50	44,10	35,60	29,80	39,20	18,20	248,9
D [m]	0,240	0,240	0,240	0,240	0,175	0,240	0,240	0,240	0,240	
[m]	1,00	1,25	1,25	1,00	1,75	1,40	1,25	1,75	1,00	
Wall	-	~	6	4	5	9	2	8	6	Sum

side the cross section	ide the cross section							
outsic	inside	inside	inside	inside	inside	inside	insid	inside
6%	8%	8%	10%	18%	14%	12%	16%	7%

4825,5 4825,80	Sum Wallcap ist Sum Walcap soll
3442,3	Sum
399,4	16
32,5	15
621,3	44
361,2	13
462	12
684,8	11
881,1	10

base	2%	%6	%6	11%	18%	14%	11%	17%	%8	100%
middle	%9	%8	8%	10%	18%	14%	12%	16%	%1	100%
cap	%9	8%	8%	10%	18%	14%	12%	16%	%L	100%
Wall	<del>.</del>	2	ę	4	ŝ	9	7	ø	<b>о</b>	Sum

Normal force N	cap	middle	base
	18,00	18,00	5,04
	149,20	149,20	155,80
	118,00	118,00	123,90
	138,80	138,80	172,30
	220,00	220,00	204,30
	195,50	195,50	218,00
	133,70	133,70	118,30
	253,30	253,30	273,50
	156,70	156,70	181,20
	1383,20	1383,20	1452,34

Annex AH11/H-neg/H -100 up to -900

report sce-24005005 from 2005-04-21

Š	
400	
H-LAST	

Non-linear results Tension strength 0,3 Mpa

c
-
ŝ
₽
က
<del>س</del>
c
ō
÷
2
ΞΨ.
U)

			1459,8	323,5			Sum
6 1	31,04	0,162	191,60	30,60	0,240	1,00	6
15%	125,49	0,460	272,80	49,20	0,240	1,75	80
1.0	37,00	0,316	117,10	34,90	0,240	1,25	7
169	73,64	0,328	224,50	50,20	0,240	1,40	9
179	75,08	0,355 1	211,50	54,40	0,175	1,75	5
129	26,36	0,166	158,80	37,70	0,240	1,00	4
8	38,79	0,323	120,10	26,20	0,240	1,25	e)
8	43,50	0,304	143,10	26,30	0,240	1,25	2
49	7,31	0,360	20,30	14,00	0,240	1,00	4
Proportion Q/H	M [kNm]	e [m]	N (KN)	Q [kN]	[m] Q	[m] T	Wall

H	Position of the resulting force N
4%	inside the cross section
8%	inside the cross section
8%	inside the cross section
12%	inside the cross section
17%	inside the cross section
16%	inside the cross section
11%	inside the cross section
15%	inside the cross section
%6	inside the cross section

Section 0.	125m						
Wall	۲ [m]	[m] Q	Q [kN]	N [kN]	e [m]	M [kNm]	Proportion Q/H Position of the resulting force N
t t	1,00	0,240	8,24	4,04	-0,425	-1,72	3% inside the cross section
2	1,25	0,240	26,00	155,00	0,465	72,08	8% inside the cross section
6	1,25	0,240	25,90	136,90	0,488	66,81	8% inside the cross section
4	1,00	0,240	38,00	202,60	0,241	48,83	12% inside the cross section
5	1,75	0,175	51,40	197,70	0,607	120,00	17% inside the cross section
9	1,40	0,240	50,20	253,90	0,444	112,73	16% inside the cross section
L	1,25	0,240	29,10	94,50	0,529	49,99	9% inside the cross section
8	1,75	0,240	50,00	308,40	0,582	179,49	16% inside the cross section
6	1,00	0,240	30,70	228,90	0,209	47,84	10% inside the cross section
Sum			309,54	1581,94	4		

ł	
	_
ļ	5
	2
	9
1	2
	ō
	÷
1	ē
	v,

Proportion Q/H Position of the resulting force N	4% inside the cross section	8% inside the cross section	8% inside the cross section	10% inside the cross section
M [kNm]	-2,00	16,08	9,40	6 9
e [m]	-0,064	0,104	0,074	0,062
N [KN]	31,30	154,60	127,00	112,80
a [kN]	13,10	23,80	23,40	30,20
[w] Q	0,240	0,240	0,240	0,240
L [m]	1,00	1,25	1,25	1,00
Wall	1	5	S	4

4829,8 4825,80	Sum Waltmiddle ist Sum Wallmiddle soll
3370	uns
421,3	₫G
-84,4	15
618,6	14
314,8	13
462,4	12
710,1	11
927,2	10

4919,54 4825,80	Sum Wallbase ist
3337,6	Sum
457,3	16
-129,5	15
594,2	14
271,5	13
455	12
731	11
958,1	10

Page 7 / 18

915,8 647,6 455,7 361

5 £ 5 5

Annex AH1/H-neg/H -100 up to -900

report sce-:24005005 from 2005-04-21

		1425,3	306,2			Sum
15,45	0,105	147,10	31,50	0,240	1,00	6
66,24	0,251	263,90	47,20	0,240	1,75	8
14,68	0,101	145,30	31,50	0,240	1,25	2
43,44	0,240	181,00	50,20	0,240	1,40	9
35,15	0,134	262,30	55,30	0,175	1,75	5

18% inside the cross section
16% inside the cross section
10% inside the cross section
15% inside the cross section
10% inside the cross section

14 627,3 15 4,07 16 393,4 16 393,4 Sum 3404,87

4830,17 4825,80

Sum Wallcap ist Sum Wallcap soll

Wall	cap	middle	base
٣	4%	4%	3%
2	8%	8%	%8
ю	8%	8%	%8
4	10%	12%	12%
so	48%	17%	17%
G	16%	16%	16%
4	10%	11%	3%
æ	15%	15%	16%
o,	10%	9%6	40%
Sum	100%	100%	100%

al force N	<b>y</b>	cap	middle	base
		31,30	20,30	4,0
		154,60	143,10	155,01
		127,00	120,10	136,91
		112,80	158,80	202,6
		262,30	211,50	197,7
		181,00	224,50	253,9
		145,30	117,10	94,5
		263,90	272,80	308,4
		147,10	191,60	228,9
		1425,30	1459,80	1581,9

Annex AH1/H-neg/H -100 up to -900

report sce-24005005 from 2005-04-21

X	
-500	
H-LAST	

Tension strength 0,3 Mpa Non-linear results

Section 1,375m

Wall	r [m]	[ɯ] O	Q [kN]	N [kN]	e [m]	M [kNm]	Proportion C
-	1.00	0,240	15,40	27,20	0,232	6,31	
2	1.25	0,240	30,40	148.30	0,309	45,82	
6	1.25	0,240	34,30	129,60	0,307	39,79	
4	1.00	0,240	53,00	184,40	0,180	33,19	
5	1.75	0,175	67,70	219,70	0,349	76,68	
9	1 40	0,240	50,30	228,10	0,355	80,98	` 
2	1,25	0,240	38,60	115,70	0,298	34,48	` 
8	1,75	0,240	66,60	312,10	0,481	150,12	
6	1,00	0,240	46,90	224,20	0,180	40,36	•
Sum			403.2	1589.3			t

n. Q/H Position of the resulting force N
4% inside the cross section
8% inside the cross section
9% inside the cross section
13% inside the cross section
17% inside the cross section
17% inside the cross section
17% inside the cross section
12% inside the cross section

957,2 720,3 450,1 249,3 249,3 -190,2 594,3

0 1 2 2 2 2 2 2 2 2

4810,5 4825,80

Sum Wallmiddle ist Sum Wallmiddle soll

Sum

3221,2

1001 733,5 733,5 425,4 214,6 494,2 -104,4

011255488

3309,5

5059,44 4825,80

Sum Waltbase ist Sum Wallbase soll

Sum

Iside the cross section	iside the cross section	iside the cross section	side the cross section	iside the cross section	nside the cross section	nside the cross section	nside the cross section	
3	<u>ب</u>				9		6 i	

	N [kN] e [m] M [kNm] Proportion Q/H Position of the resulting force N	33 6,84 0,651 4,45 1% outside the cross section	40 167,70 0,478 80,16 8% inside the cross section	50         164,60         0,478         78,68         9% inside the cross section	20 237,10 0,300 71,13 15% inside the cross section	90 206,60 0,656 135,53 16% inside the cross section	20 253,70 0,495 125,58 13% inside the cross section	10 72,10 0,549 39,60 7% inside the cross section	80 372,70 0,608 226,60 18% inside the cross section	
	kn] n [kn]	4,93 6,84	27,40 167,70	31,50 164,60	54,20 237,10	59,90 206,60	47,20 253,70	27,10 72,10	63,80 372,70	
	] o [w] a	0,240	0,240	0,240	0,240	0,175	0,240	0,240	0,240	
125m	L [m]	1,00	1,25	1,25	1,00	1,75	1,40	1,25	1,75	
Section 0.	Wall	1	2	e	4	5	9	4	8	

1749,94

364,13

Ø Sum

	- 1
1	01
	NI.
	<b>S</b>
	21
	EI.
	01
	111
	×1
	×1
	w

Proportion Q/H Position of the resulting force N	4% inside the cross section	7% inside the cross section	8% inside the cross section	11% inside the cross section
M [KNM]	-6,80	13,05	0,00	7,62
e [m]	-0,174	0,082	0,000	0,064
N [KN]	39,10	159,10	134,70	119,00
Q [kN]	15,30	26,30	29,80	41,90
[ɯ] o	0,240	0,240	0,240	0,240
۲ س]	1,00	1,25	1,25	1,00
Wall		2	ø	4

952,1 657,3 446,3 315,4 5 <del>1</del> 5 5 5

Page 9 / 18

2 ശ စတ Sum

20,76 43,97 9,67 67,16 16,88 0,076 0,224 0,065 0,230 0,104 273,20 196,30 148,80 292,00 162,30 1524,5 369 67,20 48,70 33,50 62,00 44,30 0,175 0,240 0,240 0,240 0,240 1,75 1,40 1,75 1,00

18% inside the cross section
13% inside the cross section
9% inside the cross section
17% inside the cross section

report sce-24005005 from 2005-04-21

· j

Annex AH1/H-neg/H -100 up to -900

408,6 -80,7 616,9 3315,9 Sum

4840,4 4825,80

Sum Wallcap ist Sum Wallcap soll

	%	3%	3%	2%	%	3%	°%	3%	3%	3%
base	•	3		1	16	1		1	1	<u>1</u>
middle	4%	%8	%6	13%	17%	12%	10%	17%	12%	100%
cap	4%	%4	8%	11%	18%	13%	9%6	17%	12%	100%
Wall	*	51	e	4	40	G	~	80	0	

Normal force N	cap	middle	base
	 39,10	27,20	6,84
	159,10	148,30	167,70
	 134,70	129,60	164,60
	 119,00	184,40	237,10
	 273,20	219,70	206,60
	 196,30	228,10	253,70
	148,80	115,70	72,10
	 292,00	312,10	372,70
	 162,30	224,20	268,60
	1524,50	1589.30	1749,94

,

Annex AH1/H-neg/H -100 up to -900

report sce-24005005 from 2005-04-21

H-LAST -600 KN

Non-linear results

Tension strength 0,3 Mpa

		_
_	1	5
_	ſ	3
	•	_
		50
		0 Q
ļ	ľ	ņ

Wall	L [m]	[ɯ] Q	Q [kN]	N [KN]	e [m]	M [kNm]	Proportion (
	1,00	0,240	21,30	29,70	0,168	4,99	<b></b>
2	1,25	0,240	37,80	155,10	0,310	48,08	
3	1,25	0,240	45,10	140,40	0,298	41,84	
4	1,00	0,240	62,00	209,10	0,164	34,29	<b></b>
5	1,75	0,175	84,60	226,60	0,353	79,99	
e	1,40	0,240	44,90	195,20	0,439	85,69	r
4	1,25	0,240	46,80	110,50	0,300	33,15	
œ	1,75	0,240	89,20	350,30	0,504	176,55	
6	1,00	0,240	46,30	206,50	0,327	67,53	
Sum			478	1623,4	1		1

n Q/H Position of the resulting force N
4% inside the cross section
8% inside the cross section
9% inside the cross section
13% inside the cross section
10% inside the cross section
10% inside the cross section
10% inside the cross section

1013 719,4 182 182 565,1 -119,1 455,4

0101010100

4875,2 4825,80

Sum Wallmiddle ist Sum Wallmiddle soll

Sum

3251,8

Section U.	mc21						
174	1	1	UMU C	NI TUNT	Įmi o	at thim!	Bronartian Old Bacition of t
liev	ь [m]	նոյս	K [MM]	IN IVIN	c [11]	THAN'T M	
1	1,00	0,240	6,95	7,30	0,453	3,30	2% inside the cro
5	1,25	0,240	33,30	190,90	0,486	92,78	8% inside the cro
3	1,25	0,240	41,70	195,00	0,488	95,16	10% inside the crc
4	1,00	0,240	62,20	262,30	0,322	84,46	15% inside the crc
с С	1,75	0,175	71,60	227,40	0,686	156,00	17% inside the cro
9	1,40	0,240	40,50	232,90	0,538	125,30	10% inside the crc
7	1,25	0,240	27,80	61.40	0,538	33,05	7% inside the cro
8	1,75	0,240	85,60	443,70	0,631	279,97	21% inside the cro
6	1,00	0,240	40,20	242,60	0,333	80,79	10% inside the cro
E			28 6UP	1863.5			

h Q/H	Position of the resulting force N
2%	inside the cross section
8%	inside the cross section
10%	inside the cross section
15%	inside the cross section
17%	inside the cross section
10%	inside the cross section
%4	inside the cross section
21%	inside the cross section
10%	inside the cross section

1107 716,5 398,8 178,9 492,3 -0,0878 526,2

ç ÷ ç ç ¢ 4 ¢ ¢

	Proportion Q/H Position of the resulting force N	5% inside the cross section	8% inside the cross section	9% inside the cross section	11% inside the cross section
	M [kNm]	-11,64	7,07	±10,12	7,81
	e [m]	-0,244	0,043	-0,071	0,060
	N [kN]	47,70	164,40	142,50	130,20
	a [kN]	20,30	32,90	37,80	46,50
	D [m]	0,240	0,240	0,240	0,240
25m	r [m]	1,00	1,25	1,25	1,00
Section 2.6	Wall	÷	2	e	4

¢	
~	
***	•
đ	1
Ē	1
- ā	i
n n	

1016 658,2 439,3 262,3 6 <del>1</del> 6 6

5283,1122 4825,80

Sum Wallbase ist Sum Wallbase soll

Sum

3419,6122

131 262 1

		1574,9	429			Sum
16,43	0,105	156,50	42,80	0,240	1,00	6
66,72	0,210	317,70	82,30	0,240	1,75	80
3,92	0,026	150,60	38,50	0,240	1,25	2
40,22	0,220	182,80	45,60	0,240	1,40	ø
5,37	0,019	282,50	82,30	0,175	1,75	5

19% inside the cross section
11% inside the cross section
9% inside the cross section
19% inside the cross section
10% inside the cross section

Annex AH1/H-neg/H -100 up to -900

report sce-24005005 from 2005-04-21

 14
 601,9

 15
 -99,5

 16
 418,6

 20m
 3296,8

 Sum Walkcap ist
 4825,80

base	2%	8%	10%	15%	17%	10%	%1	21%	10%	100%
middle	4%	%8	%6	13%	18%	9%6	10%	19%	10%	100%
cap	5%	8%	%6	11%	19%	11%	%6	19%	10%	100%
Wall	*	N	~	4	ŝ	9	~	æ	<b>"</b>	Sum

 			THE REAL PROPERTY AND ADDRESS OF THE PARTY O
	47,70	29,70	7,30
 	164,40	155,10	190,90
	142,50	140,40	195,00
 	130,20	209,10	262,30
 	282,50	226,60	227,40
	182,80	195,20	232,90
	150,60	110,50	61,40
	317,70	350,30	443,70
	156,50	206,50	242,60
	1574,90	1623,40	1863,50

Annex AH1/H-neg/H -100 up to -900

report sce-24005005 from 2005-04-21

H-LAST -700 KN

Non-linear results

Tension strength 0,3 Mpa

εl
375
Ē
ŝ
σ

			1630,4	547,8			Sum
79	47,74	0,285	167,50	38,50	0,240	1,00	o
203	203,75	0,514	396,40	111,90	0,240	1,75	80
19	33,55	0,318	105,50	55,00	0,240	1,25	7
-2-	82,10	0,491	167,20	39,10	0,240	1,40	9
199	84,92	0,358	237,20	102,60	0,175	1,75	5
129	38,17	0,170	224,50	68,00	0,240	1,00	4
119	46,64	0,316	147,60	58,30	0,240	1,25	3
6	51,52	0,318	162,00	46,90	0,240	1,25	5
5	7,70	0,342	22,50	27,50	0,240	1,00	ł
Proportion Q/H	M [kNm]	e [m]	N [kN]	Q [KN]	[m] Q	L [m]	Wall

WH Position of the resulting force N
5% inside the cross section
9% inside the cross section
11% inside the cross section
13% inside the cross section
19% inside the cross section
7% inside the cross section
7% inside the cross section

Section 0.	125m						
Wall	L [m]	[m] a	Q [kN]	N [KN]	e [m]	M [kNm]	Proportion Q/H Position o
1	1,00	0,240	10,90	6,87	0,473	3,25	2% inside the c
2	1,25	0,240	39,90	216,50	0,497	107,60	9% inside the c
e	1.25	0,240	53,30	230,80	0,487	112,40	12% inside the c
4	1.00	0,240	64,80	280,40	0,347	97,30	14% inside the (
6	1.75	0,175	85,10	258,70	0,698	180,57	19% inside the c
9	1.40	0,240	38,10	211,50	0,568	120,13	8% inside the c
4	1,25	0,240	29,20	52,60	0,562	29,58	6% inside the c
8	1,75	0,240	106,60	521,60	0,643	335,39	23% inside the c
6	1,00	0,240	31,10	212,80	0,375	79,80	7% inside the c
Sum			459	1991,77			

Ho	Position of the resulting force N
2%	inside the cross section
%6	inside the cross section
12%	inside the cross section
14%	inside the cross section
19%	inside the cross section
8%	inside the cross section
%9	inside the cross section
23%	inside the cross section
%1	inside the cross section

625m				, 1.13	he fubled	Demonstran Old Brettian of the r
	n (m)	L [KN]	N KNJ	ful a		
00	0,240	24,60	57,30	-0,297	-17,02	5% inside the cross (
1,25	0,240	38,70	171,10	0,004	0,68	8% inside the cross s
1,25	0,240	45,20	151,70	-0,144	-21,84	9% inside the cross a
00	0.240	47,90	143,80	0,034	4,89	10% inside the cross s

0,240

1,00

ting force N	u	u	u	u
ie resul	ss sectic	ss sectic	ss sectic	ss sectio
on of th	the cro	the cro	the cro	the cro
Positi	inside	inside	inside	inside
Ha	5%	8%	%6	10%

A and A announced	
section	
section	
section	

3321,8 4952,2 4825,80	Sum Sum Walimiddle ist Sum Walimiddle soli
468,2	16
-15,1	15
530,3	14
133,1	13
414,7	12
713,6	11
1077	10

5463,264 4825,80	um Wallbase ist um Wallbase soll
3471,494	un
556,3	16
-0,006	15
447,6	14
155,4	13
377,8	12
692,4	11
1242	10

80
2
ñ.
÷
e
ğ
ã.

1102 654,3 433,3 216,9

		5.610T	4/8,5]			Sum
15,70	0,110	142,70	36,20	0,240	1,00	6
68,18	0,197	346,10	100,60	0,240	1,75	80
4,13	-0,027	152,80	42,40	0,240	1,25	1
38,24	0,247	154,80	44,50	0,240	1,40	9
-9,08	-0,031	293,00	98,20	0,175	1.75	5

21% inside the cross section
9% inside the cross section
9% inside the cross section
21% inside the cross section
8% inside the cross section

report sce-24005005 from 2005-04-21

· .)

Annex AH1/H-neg/H -100 up to -900

585,2 - 131,3 426,5	3286,9	4900,2 4825,80
<b>4</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b> <b>1</b>	Sum	Sum Wallcap ist Sum Wallcap soli

	cap 5% 8% 9% 10% 21%	middle 5% 9% 11% 12%	base 2% 9% 12% 14%
h	% <del>6</del> %6	10%	8% 6%
	21% 8%	20%	23%
1	100%	100%	100%

Normal force N		cap	middle	base
	L	57,30	22,50	6,87
	 <u> </u>	171,10	162,00	216,50
		151,70	147,60	230,80
	 <u></u>	143,80	224,50	280,40
	 1	293,00	237,20	258,70
	 L	154,80	167,20	211,50
	 <u> </u>	152,80	105,50	52,60
	 I	346,10	396,40	521,60
		142,70	167,50	212,80
	L	1613,30	1630,40	1991,77

Page 14 / 18

Annex AH1/H-neg/H -100 up to -900

report sce-24005005 from 2005-04-21

¥
-800
H-LAST

Non-linear results

Tension strength 0,3 Mpa

Section 1	,375m					
Wall	[m]	[m] Q	Q [kN]	n [kn]	e [m]	M [kNm]
1	1,00	0,240	33,20	34,10	0,245	8,35
2	1,25	0,240	57,80	170,30	0,347	29,09
e	1.25	0,240	72,50	162,10	0,299	48,47
4	1,00	0,240	68,70	233,60	0,183	42,75
S	1.75	0,175	112,20	257,90	0,334	86,14
9	1,40	0,240	36,00	142,60	0,517	73,72
2	1,25	0,240	59,60	103,10	0,342	35,26
80	1,75	0,240	129,40	450,40	0,526	236,91
6	1,00	0,240	30,90	134,00	0,344	46,10
Sum			600,3	1688,1		

g force N									
resultin	section	section							
in of the	he cross	the cross	the cross						
Positio	inside t	inside t							
oportion Q/H	6%	10%	12%	11%	19%	6%	10%	22%	2%
ď.							_		

1145 700,1 700,1 382,7 96 487,4 0,895 0,895

3990,995

5679,095 4825,80

Sum Walimiddle ist Sum Walimiddle soll

Sum

Section 0.125m

I Position of the resulting for	% inside the cross section									
H	3%	10%	13%	13%	19%	%2	%9	25%	5%	

1373 665.2 357,9 130,1 420,1 0,0063 586,4

Section 2.	625m					
Wall	E I	[w] 0	Q [kN]	N [kN]	e [m]	M [kNm]
-	1.00	0,240	28,50	67,00	-0,330	-22,11
2	1,25	0,240	44,30	178,80	-0,030	-5,36
3	1,25	0,240	53,60	159,50	-0,212	-33,81
4	1,00	0,240	47,70	152,30	0,049	7,46

Position of the resulting force N	inside the cross section	inside the cross section	inside the cross section
Proportion Q/H	5%	8%	10%

E	POSITIC	Ĕ	or the	resumng
5%	inside 1	the	cross	section
8%	inside 1	the	cross	section
10%	inside 1	цр Ц	Cross	section
		,		

E % %	rosu inside inside	the the	or une cross cross	section section section	<b>&gt;</b>
%	inside	the	cross	section	

9% inside the cross section

Page 15 / 18

1224 644,8 426,3 206,5

5 5 5 5 5

5652,1663 4825,80

Sum Wallbase ist Sum Wallbase soll

Sum

3532,7063

Annex AH1/H-neg/H -100 up to -900

report sce-24005005 from 2005-04-21

		1643,1	527.1			Sum
15,54	0,127	122.40	28,40	0,240	1,00	6
71.55	0,187	382,60	118,50	0,240	1,75	æ
-11.78	-0.076	155,00	46,00	0,240	1,25	2
34,86	0,300	116,20	46,80	0,240	1,40	9
-24,43	-0,079	309,30	113,30	0,175	1,75	5

21% inside the cross section
9% inside the cross section
9% inside the cross section
22% inside the cross section
5% inside the cross section

 14
 567,6

 15
 -86,1

 16
 -436,3

 16
 -3419,4

 Sum Wallcap ist
 5062,5

 Sum Wallcap soli
 4325,80

Wall	cap	middle	base
-	5%	% <del>9</del>	3%
~	8%	10%	10%
m	10%	12%	13%
4	%6	11%	13%
ŝ	21%	19%	19%
G	%6	6%	%L
7	%6	10%	6%
~~~	22%	22%	25%
"	5%	5%	2%
Sum	100%	100%	100%

Normal force N		cap	middle	base
	L	67,00	34,10	6,16
		178,80	170,30	251,10
	I	159,50	162,10	265,90
	L	152,30	233,60	291,70
		309,30	257,90	293,10
		116,20	142,60	191,90
	<u> </u>	155,00	103,10	48,40
		382,60	450,40	594,60
	Į	122,40	134,00	176,60
	1	1643,10	1688,10	2119,46

Annex AH1/H-neg/H -100 up to -900

Š
-900
\ST
Ч Н

Tension strength 0,3 Mpa Non-linear results

ŧ	
E	
	375m
	*
	Section

Wall	۲ [m]	[m] Q	Q [kN]	N [KN]	e [m]	M [kNm]	Proportion
+	1.00	0,240				0,00	
2	1,25	0,240				0,00	
e	1,25	0,240				0,00	
4	1,00	0,240				0,00	
ŝ	1,75	0,175				0,00	
ê	1,40	0,240				0,00	
2	1,25	0,240				0,00	
8	1,75	0,240				0,00	
6	1,00	0,240				0,00	
Sum				0	0		

Position of the resulting force N	inside the cross section
Proportion Q/H	

₽ ₽

Section 0.1	125m						
	•		517-14 C	11.040	í Turt	Al CLNIm1	Bronortion Oli
Wall	L [m]	[ɯ] n	G KNJ	N [KN]	e (ni)	M [KIN]	
1	1,00	0,240	1			0,00	
5	1,25	0,240				0,00	
3	1,25	0,240				00'0	
4	1,00	0,240				0,00	
5	1,75	0,175				0,00	
9	1,40	0,240				00'00	
7	1,25	0,240				00'00	
8	1,75	0,240				00'0	
6	1,00	0,240		_		0,00	
Sum				0	0		

Sum

Q/H Position of the resulting force N inside the cross section inside the cross section

r 1	Proportion Q/H				
	M [kNm]	00'0	0,00	00'00	00'0
	e [m]				
	N [KN]				
	g [kn]				
	[m] Q	0,240	0,240	0,240	0.240
25m	r [m]	1,00	1,25	1,25	1.00
Section 2.6:	Wall	-	2	0	4

ce N				
ing for	e	~	e	c
resulti	section	section	section	section
of the	Cross	Cross	eross	e cross
osition	nside the	nside the	nside the	nside the

	0	0 4825,80
<u>ర భ శ గు భ</u>	Sum	Sum Walimiddle ist Sum Walimiddle soll

10	
4 m 4 m	
12	
13	
14	
15	
16	
un	0
um Wallbase ist	0
um Wallbase soll	4825,80

10	*	12	13

Page 17 / 18

Annex AH1/H-neg/H -100 up to -900

 5
 1,75
 0,175
 0,00

 6
 1,40
 0,240
 0,00

 7
 1,25
 0,240
 0,00

 8
 1,75
 0,240
 0,00

 9
 1,00
 0,240
 0,00

0

ō

Sum

inside the cross section Inside the cross section inside the cross section inside the cross section inside the cross section

report sce-24005005 from 2005-04-21

14 15 16 Sum Waltcap ist 4825,80

base										
middle										
cap										
Wall	-	~	m	4	чо	Q	ç	80	6	Sum

ormal force N	 сар	middle	base
	 00'0	00'0	00'0
<u> </u>	 00'0	00'0	00'0
	00'0	00'0	00'0
	 00'0	00'0	00'0

report sce-24005005 from 2005-04-21		nsverse walls		N [KW]	-710,62	-309,36 226.06	-589,51	-417,52	-449,99	-534,62	-3237,67 Sumv actual sumv Larget uiscrepancy III /0	-4955,335 4954,90 0%		N [Ktv]	-764,80	-337,45	-552,86	-419,13	-004-1u2 -124 DE	-100,80	-3241,07 sumV actual sumV target discrepancy in %	-4955,348 4954,90 0%				N [KN]	-816,05	-366,43	-570,93	-420,82	-618,55	-43,08
Annex AH1-mod/H-neg/middle		tra			ortion Q/H Position of the resulting force N	7% inside the cross section	3% inside the cross section	7% inside the cross section	14% inside the cross section	1% inside the cross section	7% inside the cross section	12% inside the cross section	17% inside the cross section			ortion Q/H Position of the resulting force N	6% Inside the cross section	8% inside the cross section	4% Inside the cross section	9% insure the cross section 18%	3% inside the cross section	8% inside the cross section	13% inside the cross section	18% inside the cross section		ortion Q/H Position of the resulting force N	5% inside the cross section	8% inside the cross section	4% inside the cross section	5% inside the cross section	21% inside the cross section	3% inside the cross section
					[kN] Propo	7,02	3,27	7,16	13,95	1,31	7,40	12,20	17,46	8,58		bropc	11,58	16,89	7,90	38.56	5.28	15,92	26,62	36,78	11,04	[kN] Propo	14,86	25,35	12,78	15,85	63,18	9,30
					A [kNm] Q	-2,51	-8.53	-3,97	-65,39	-6,44	-25,86	-20,39	-62,48	Sum 7		A [kNm] Q	-6,01	-42,95	-15,71	-113.36	-10.50	48,08	-40,48	-114,53	Sum	M [kNm] Q	-8.93	-63,74	-22,99	-11,39	-162,28	-14,68
JESY TURES	ve		н н н 83 9 9 9 н н н н н н н н н н н н н н н н н		N [kN]	45,784	-220,780	-99,475	-242,179	-93,646	-251,783	-241,049	-391,456	-1717,66		I INN N	-34,919	-228,571	-117,494	-105,468	-108.699	-256,291	-210,372	-376,377	-1714,27	N IKNI	-25.320	-230,342	-109,231	-112,024	-311,294	-124,130
D GEOD STRUC	negati		rizontal fo rizontal fo rizontal fo		E	1,000	1,738	1,000	2,400	1,000	1,750	1,750	2,750	Sum		[w] T	1,000	1,750	1,250	1,0001 2,400	1,000	1,750	1,750	2,750	 mns	r [m]	1.000	1.750	1,250	1,000	2,400	1,000
ING ANI SONRY	ыH ;рс	ar-Walls	n of the ho n of the ho n of the ho n of the ho		L12	0,500	0.625	0,500	1,200	0,500	0,875	0,875	1,375			1 2	0,500	0,875	0,625	1 200	0.500	0,875	0,875	1,375		112	0.500	0.875	0,625	0,500	1,200	0,500
UNICH GINEER AND MA	e 1-mc	She	ie directio le directio le directio le directio		įЩ	0,055	0.068	0,040	0,270	0,069	0,103	0,085	0,160			[m] a	0,172	0,138	0,134	0,072	0.097	0,188	0,192	0,304		[m]	0.353	0.277	0,211	0,102	0,521	0,118
SSITY M IVIL EN CRETE	Hous		sion upression upared to ti pared to ti pared to ti pared to ti		Ē	0,000	0000	0,000	5,500	10,000	10,000	10,000	4,250			[w]	0,000	0,000	0,000	0,000 5,500	10.000	10,000	10,000	4,250		[m]	0.000	0.000	000'0	0,000	5,500	10,000
L UNIVER ENT OF C OF CONC			osifive Ten agative Corr ositive com agative com ositive com	00'00	a	0,445	0,175	0,460	0,930	0,431	0,772	0,790	1,215		000'00	a D	0,328	0,687	0,491	0,428 n 78a	0.403	0,687	0,683	1,071	000 00	ب د	D 148	0.598	0,415	0,398	0,679	0,382
TECHNICA DEPARTME INSTITUTE			2 2 0 0 ° ° 4 5 4 5 5 4	H 11	Wall	Wall 1	Wall 2 Wall 3	Wall 4	Wall 6	Wall 9	Wali 7	Wali 8	Wall 5		H= 2(Wall	Mail 1	Wall 2	Wall 3	Wall 4	Mali q	Wali 7	Wall 8	Wall 5	1 1 1 1	IIeMi	Mag 1	Wall 2	Wali 3	Wall 4	Wall 6	Wall 9

Page 1/3

report sce-24005005 from 2005-04-21

DEPAR	ICAL UNIT	VERSITY F CIVIL E	MUNICH ENGINEE	f RING AN	VD GEO	DESY				Annex AH1-mod/H-neg/middle			report sce-2	4005005 from 2005-04-21
				NNDOF		2000								
Wall 7	0,604	10,000	0,271	0,875	1,750	-260,849	-70,74	24,91	8%	inside the cross section	-404,09			
Wall 8	0,543	10,000	0,332	0,875	1,750	-180,586	-59,97	39,96	13%	inside the cross section	-3239,96	sumV actual	sumV target	discrepancy in %
Wall 5	0,915	4,250	0,460	1,375	2,750	-361,665	-166,44	57,13	19%	inside the cross section		4955,379	4954,90	%0
					لب S ^{um} S	-1715,42	Sum L	263,32						
:														
<u></u>	400,000													
Mall	ø	[m] Q	e [m]	L/2	L [m]	N [kN]	M [kNm]	Q [KN]	Proportion Q/H F	osition of the resulting force N	N [KN]			
Wall 1	-0,115	0,000	0,615	0,500	1,000	-17,788	-10,94	16,79	4%	outside the cross section	-867,95			
Wall 2	0,509	000'0	0,366	0,875	1,750	-231,768	-84,90	35,06	9%	inside the cross section	-393,10			
Wall 3	0,329	0'00	0,296	0,625	1,250	-101,033	-29,92	17,92	4%	inside the cross section	-586,68			
Wall 4	0,370	000'0	0,130	0,500	1,000	-118,638	-15,41	21,05	5%	inside the cross section	421,59			
Wall 6	0,597	5,500	0,603	1,200	2,400	-346,151	-208,76	87,91	22%	inside the cross section	-631,62			
Wali 9	0.364	10.000	1 0.136	0.500	1.000	-140,721	-19,16	14,53	4%	inside the cross section	50,07			
Wall 7	0.521	10.000	0,355	0,875	1,750	-265,532	-94,13	35,31	8%	inside the cross section	-379,62			
Wall 8	0.387	10.000	0.488	0.875	1,750	-152.918	-74.69	50,56	13%	inside the cross section	-3230,47	sumV actual	sumV target	discrepancy in %
Wall 5	0.767	4,250	0,608	1,375	2,750	-349,710	-212,62	75,94	19%	inside the cross section		-4954,730	4954,90	%0
					Sum	-1724,26	Sum	355,08						
1	000 003				1		J							
Ë	000'009 :													
Wall	B	D [m]	e [m]	LI2	L [m]	N [kN]	M [kNm]	q [ƙN]	Proportion Q/H F	osition of the resulting force N	N [KN]			
Wałl 1	-0,186	000'0	0,686	0,500	1,000	-15,878	-10,90	17,92	4%	outside the cross section	-910,57			
Wail 2	0,429	0,000	0,446	0,875	1,750	-236,593	-105,50	45,38	9%	inside the cross section	417,39			
Wall 3	0,256	0,00	0,369	0,625	1,250	-93,895	-34,68	22,51	5%	inside the cross section	86.685			
Wali 4	0,337	000'0	0,163	0,500	1,000	-126,092	-20,57	28,62	6%	inside the cross section	418,53			
Wall 6	0,519	5,500	0,681	1,200	2,400	-375,822	-255,86	107,16	21%		50 F C T			
Wall 9	0,345	10,000	0,155	0.500	1,000	-161,395	-25,03	22,26	4%	inside the cross section	151,83			
Wall 7	0,450	10,000	0,425	0,875	1,750	-277,228	-117,91	46,63	9%6		-040 ⁴ -0	Journa Varua	cumV target	discrenancy in %
Wall 8	0,253	10,000	0,622	0,875	1,750	-128,560	00'08-	58,33	12%		40 ⁻ 0616-	34111V AULUAS	Sum target	
Wall 5	0,662	4,250	0,713	1,375	2,750	-347,853	-248,05	94,28	19%			-4836,371	4534,30	0.70
					sum	-1763,32	Sum	443,08						
£	600,000													
2]	5]	AL CLAR		0 feats	Pronortion O/H F	esition of the resulting force N	N TKNP			
APAGIN		Ling of the	fiel a	0 500	1000	JUDA UT	14 27	190 01	20/	autoide the reves section	.050 10			
	700'0		0 530	0.875	1 750	226 296-	-173 GK	55.21	6%	inside the cross section	-439.40			
Wall 3	0.01	0000	0 424	0.625	1.250	-88.987	-37.70	26.33	4%	inside the cross section	-594,64			
Wall 4	0.308	0000	0,193	0.500	1,000	-133,930	-25,78	37,49	6%	inside the cross section	-411,91			
Wall 6	0,470	5,500	0,730	1,200	2,400	-401,150	-292,80	121,79	20%	inside the cross section	-645,48			
Wall 9	0,325	10,000	0,175	0,500	1,000	-178,574	-31,30	30,39	5%	inside the cross section	185,37			
Wall 7	0,395	10,000	0,480	0,875	1,750	-291,957	-140,08	56,82	9%	inside the cross section	-310,73			
Wall 8	0,055	10,000	0,820	0,875	1,750	-102,000	-83,60	66,38	11%	inside the cross section	-3175,98	sumV actual	sumV target	discrepancy in %
Wall 5	0,559	4,250	0.816	1,375	2,750	-346,816	-282,86	115,19	19%	inside the cross section		-4975,449	4954,90	0%
					Sum	-1799,47	Sum	528,44						
±	- 700,000													
-tv/ali	*	[m] (J	e [m]	112	L [m]	N TKAT	M (kNm)	Q IKNI	Proportion Q/H F	osition of the resulting force N	N [KN]			
Wall 1	0,256	0000	0,244	0,500	1,000	-32,251	-7.86	20,78	3%	inside the cross section	-994,46			
Wall 2	0,368	0000	0,507	0,875	1,750	-275,468	-139,74	71,40	10%	inside the cross section	-447,86			
-														

Page 2/3

(

()

TECHNI	CAL UNIV	ERSITY	MUNICH	H FRING AL	ND GEC					Annex AH1-mod/H-neg/mid	die		report sce-2.	1005005 fram 2005-04-2
INSTITU	TE OF CC	ONCRE	TE AND A	MASONR	Y STRL	JCTURES								
Wall 3	0,285	0,00	0 0,340	0,625	1,250	106'16-	-33,29	32,34	5%	inside the cross section	-552,72			
Wall 4	0,298	100'0	0 0,202	0,500	1,000	-150,811	-30,49	50,96	79%	inside the cross section	-381,65			
Wall 6	0,427	5,50	0 0,773	1,200	2,400	-386,477	-298,79	106,12	15%	inside the cross section	-018,55			
Wall 9	0,238	10,001	0 0,262	0,500	1,000	-144,571	-37,92	30,12	4%	inside the cross section	112,28			
Wall 7	0,393	10,00	0,482	0.875	1,750	-333,589	-160,82	72,27	10%	inside the cross section	-229,63		townet Warne	discussion in 8/
Wall 8	0,299	10,001	0 0,576	0,875	1,750	-115,907	-56,75	66,53	10%	inside the cross section	-3112,64	Sumv actual	sumv target	discrepancy in 76
Wall 5	0,630	4,251	0 0,745	1,375	2,750	-394,206	-293,60	146 ₅ 88	21%	inside the cross section		-5043,822	4954,90	2%
					Sum	-1931,19	Sum	597,40						
#	800.000													
:														
Wall	â	[m] 0	e [m]	112	[m]	N [kN]	M [kNm]	Q [KN]	Proportion Q/H	Position of the resulting force N	N [KN]	г		
Wall 1	0,288	000	0 0,212	0,500	1,000	-33,468	-7,11	24,33	3%	inside the cross section	-1055,66			
Wall 2	0,330	00'0	0 0,545	0,875	1,750	-292,632	-159,37	83,49	10%	inside the cross section	-464,86			
Wall 3	0,272	00 ¹ 0	0 0,353	0,625	1,250	-99,675	-35,15	38,83	5%	inside the cross section				
Wall 4	0,295	000	0,205	0,500	1,000	-162,680	-33,40	56,87	7%	inside the cross section	-366,72			
Wall 6	0,412	5,501	0,788	1,200	2,400	400,596	-315,67	116,25	15%	inside the cross section	-607,51			
Wall 9	0,151	10,001	0 0,349	0,500	1,000	-118,757	41,47	27,10	3%	inside the cross section	44,11			
Wall 7	0,360	10,001	0 0,515	0,875	1,750	-353,950	-182,29	83,70	10%	inside the cross section	-176,28			
Wall 8	0.264	10.00	0 0.611	0,875	1,750	-105,255	-64,28	70,62	%6	inside the cross section	-3152,57	sumV actual	sumV target	discrepancy in %
Wall 5	0.618	4 251	0 0.757	1.375	2.750	-417.144	-315.78	161,63	20%	inside the cross section		-5136,735	4954,90	4%
	21.25					408A 47	Gim	562.82						
						11 4001-		40,400						
Ŧ	000'008													
11414			imi e	61		NI PLAU	M Redind	O RAD	Propertion O/H	Position of the resulting force N	NIKNI			
INVALLE I	2 400		Jul 2	0.600	1 000	Juczar	Funnel au	07.00	705	inside the cross sertion	-1118.60	r		
AVBR 1	001.00	200 0	0 0 0 0	0,000	1 750	003 665	176 07	08 QR	110/	inside the cross section	478.75			
2 IIDAY	0.046		0.330	0.825	1 250	-106 292	-76.04	46.17	5%	inside the cross section	-484,64			
C ROAL	100 0	000	0000	0 600	000 \$	173 041	36.10	60.70	70%	inside the cross section	-348.15			
- HDAY	0.108	202 2	0 802	1 200	007 6	-408.641	-327.85	121 15	13%	inside the cross section	-589,65			
Anterio C	1200	100.04	7000 0	0 500	1000 +	-88.574	-38 4D	2158	766	inside the cross section	555			
C NAM	0,000	10,01	0 0 531	0.875	1 750	-381 901	46 CUC-	87.20	11%	inside the cross section	-122.04			
a line	0.285	10.00	0 500	0.875	1 7501	-102 006	60.14	69.13	8%	inside the cross section	-3138,31	sumV actual	sumV target	discrepancy in %
Wall 5	0.619	4 251	0 0.756	1.375	2.750	-449.333	-339.79	173.60	19%	inside the cross section		-5199,326	4854,90	2%
	22.2.2			-	Stim	-2084.02	Sum	716.00						
¥	1000,000													
1111		1	1	ŝ	1	11 11/10	for the bost	O LUND	Proportion O/H	Position of the resulting force N	INXU N			
Nvali			a 111			Fund of	furward se	I Naul M		contract the second section.	1444.05	r		
Wall 1	BLZ'O	00'0	0 0,281	000'0	1 750	110,15-	5,05	100 41	376	inside the cross section				
	410'0		10000	2000	030 7	102100-	201101-	06.83	207	incide the cose section	138.25			
VV381 3	0,245	nn'n	0 0,002	070'0	1,200	170.545	60 00	00'40 24 43	0.0	inside the most sertion	-330 06			
+ HEAA	0,203	2010	117'0 0	nne'n	2001	0101011-	22'00-	102 201	1967	incide the cross section				
o lievy	0,550	no'e		1,200	2,400	100001	11,1240-	10/04	10.01	inside the cross carling	10			
Wall 9	0,049	10,00	0 0,451	0,500	1,000	-/2,398	-32,62	10,131	4.10/	insue ure cross section inside the cross section	-1,12 -77 85			
Wall /	0,335	10,00	/sc'n	n,ar3	1, 20	4.4,505	no'777-	103,123	11/20	maine use diver severe	27 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- sumVactuat	sumV target	diertanancy in %
Wall 8	0,284	10,00	0,591	0,8/5	1,750	-97,189	24°.25-	51,bb	1/20	Hiblar sta cross section incide the Arget spring	005FDD0+	- 5061 240	Autry Larger	uistrupairty in 20
Wall 5	0,612	4,25	0 0,763	1,375	2,750	460,/3/	-300,941	192,24	% <u>5</u> 1			7471,020	1 10-14-004	240
					Sum	-2156,77	Ens	771,35						
_														

								discrepancy in %	5%
								sumV target	4954.90
								sumV actual	-5251.242
N [KN]	~1184,08	-490,33	-438,25	-330,06	-572,85	-1,12	-77,85	-3094,53	

Page 3/3

report sce-24005005 from 2005-04-21

report sce-24005005 from 2005-04		S		sumV actual sumV target discrepancy in %	-6076 6076 0%					I							sumV actual sumV target discrepancy in %	-6076 6076 0%												:	sumV actual sumV target discrepancy in %		
		transverse wal		IN [KN]	-882,76	-467,60	461,27	-267 20	-207,34	-3036,37							I [KN]	-974,31	466.94	-474.38	-671,56	-335,13	-201,69	-3121,21							N [KN] -1059 95	466,48	-487,61
Annex AH2/H-neg/middle					Position of the resulting force	inside the cross section	inside the cross section	inside the rease section	inside the cross section		inside the cross section	inside the cross section				Position of the resulting force	inside the cross section		inside the cross section	inside the cross section		Bacition of the meulting force	2										
					Proportion Q/H	2%	-3%	7.07	15%	6%	54%	7%	-1%	-1%	%0	-1%			Proportion Q/H	40%	0%	2%	%0	14%	%2	48%	1%	%0	1%	5%			Proportion Q/H
					a [kN]	6,75	-2,60	2,00	15.32	5,81	53,51	7,42	-0,73	-1,47	0,12	-1,12	78,20		O RAND	7 87	0.84	4,58	-0,66	27,99	14,94	96,71	2.24	-0,68	1,84	10,66	175,10		Q [KN]
					M [kNm]	3,56	1,49	3, 19	30.42	10,96	165,62	3,22	-0,92	22'0-	0,73	75,0	uns Sum		M NAIm1	102 4	-6.45	-1,97	-0,46	5,22	-0,83	63,73	-6.97	-1,16	-0,62	-35,50	Sum		[kNm]
DESY	đ		богсе н богсе н богсе н богсе н		[WA] N	-86,660	-232,797	-182,516	485.212	-312,133	-647,461	-77,477	-248,471	-91,654	-116,500	408,410	-3039,61		NI TUANT	24 092	232.872	-178,668	-148,751	-462,269	-297,331	-587,378	-254.387	-94,227	-108,706	429,303	-2954,70		N [kN]
AND GEO RY STRU	egative	S	s horizontal s horizontal e horizontal		r [m]	0,875	1,750	1,500	2.625	2.250	4,750	0,875	1,500	0,625	1,000	3,000	Sum		[m]	0.875	1 750	1,500	0,500	2,625	2,250	4,750	1.500	0,625	1,000	3,000	Ens		۲ [m]
CH EERING / MASON	2; H n	Shear-Wall	sction of the sction of the sction of the		73	0,438	0,875	0,750	d 1.313	1 125	2,375	0,438	1 0,750	9 0,313	0,500	1 1,500			2	10 138	0.875	0.750	3 0,250	1 1,313	3 1,125	9 2,375	7 0.750	0.313	0,500	3 1,500			L/2
Y MUNIC Engine Ete and	House	_	ision d to the din d to the dis d to the din d to the din d to the din		e m	0,041	0,006	0,018	0000-000	50 -0.03	00 -0,256	00 -0,045	200'0 00	00'0 000	00'0- 00	20 -0'00			Ĩ		200	00	00'0	00 -0,01	50 0,000	00 -0,10	00 -0,02	00 0.01	00'0 00	50 0,08			e [m]
IIVERSIT OF CIVIL CONCRE			e Tension e Compres e compare e compare e compare e compare		D [m]	9 0'0	1 0,00	0,0	5 0,00	3.7	5,3(9 10,60	6 10,6(10,66	6 9,3(1 7,4!		0	2			000	10'0	24 5,3(22 3,75	5,3(10,01	10.61	9,3(17 7,4		0	[w] 0
VICAL UN RTMENT UTE OF			N positiv N negativ Q positiv Q negativ e negativ e positiv	= 100,000	c	0,47	0,8£	ž'o	1.37	1.16	2,63	0,47	1 0,74	2 0,30	0,50	1,5L		t= 200,00(•		0.84	0.73	0,24	1,32	1,12	2,4	0.75	2 0.30	0,45	1,4		t= 300,001	¢\$
TECHI DEPAI INSTIT				Ľ	Wall	Wali 1	Wall 2	Wall 3	Wall 4 Wall 7	Wall 5	Wall 6	Wall 1	Wall 1	Wall 1	Wall 9	Wall 8			44-14	14(=11 4		Wall 3	Wall 4	Wall 7	Wall 5	Wall 6	VVall 1	Wall 1	Wall 9	Wail 8			Wall

report sce-24005005 from 2005-04-21

()

Page 1/5

	report sca-24005005 from 2005-04-21															sumv actual sumv target discrepancy in 76												sumV actual sumV target discrepancy in %	-6076 6076 0%					Т							sumV actual sumV target discrepancy in %
i }		-682,99	-312,81	-196,42	-3205,25											N IVN	-114/,92	-400,19	-694,46	-290,55	-190,84	-3290,87						N [KN]	-1236,12	-466,04	-514,43	-7 08,03	-185,20	-3375,82							I [KN]
	61	Wall collapsed																																							
	Annex AH2/H-neg/middle	inside the cross section		inside the cross section	inside the cross section		Position of the resulting force	2	inside the cross section	inside the cross section		inside the cross section	inside the cross section	inside the cross section		inside the cross section	Inside the cross section Inside the cross section	inside the cross section			Position of the resulting force	inside the cross section	inside the cross section	inside the cross section	inside the cross section	inside the cross section inside the cross section	inside the cross section	inside the cross section		inside the cross section	inside the cross section	Inside the cross section		Position of the resulting force	2						
		#WERTI	3%	1%	2%	0%	8%	47%	3%	2%	1%		_	Proportion Q/H	3%	2%	2%	0%	8%	46%		2%	1%	170	97.73		Proportion O(H	2%	2%	2%	%0	13%	45%	2%		0%	1%	13%			Proportion Q/H
(_)		a [kN]	8,99	4,48	7,10	40.68	24,07	139.93	9,93	5,20	3.56	28,41		a [kN]	10,10	8,00	9,61	-0,26	33.17	183,28	11,19	8,14	0,90	17'0	368,91		CIAND C	11.22	11,50	12,11	90,0,	66,11 40.20	296.07	\$2,44	11,05	1,69	6,97	63,68	465,83		a [ƙN]
		M [kNm]	1,62	-14,43	-7,12	-0,63	-12.60	-38,22	06'0	-13,02	-1,35	-71,40		M [kNm]	0,65	-22,42	-12,26	-0,80	-24.42	-140,02	-0,25	-19,09	-1,95	10.0-	Sum Sum		M fielder	-0.32	-30,44	-17,44	-0,98	-70,24	02'02-	-1,42	-25,18	-2,33	4,66	-143,62			[kNm] M
	DESY CTURES	N [kN]	-83,291	-233,049	-174,828	-147,161 -430 205	-282.545	-527, 185	-74,161	-260,439	-96,785	-450,200		N (MV)	-81,571	-233,281	-171,013	-145,520	-267.744	-466.904	-72,480	~266,569	-99,334	1070'58-	-2784,92		11.11.11	-79.804	-233,601	-167,185	-143,801	-393,281	505,202-	-70,763	-272,837	-101,887	-85,081	-482,347	-2699,91		N [kN]
	ND GEO	L [m]	0,875	1,750	1,500	0,500	2.250	4,750	0,875	1,500	1 000	3,000		L [m]	0,875	1,750	1,500	0,500	2,525	4.750	0,875	1,500	0,625	000'5	sum 5		3	0.875	1,750	1,500	0,500	2,625	1007'Y	0.875	1,500	0,625	1,000	3,000			(m] 1
	H ERING AI AASONR	L/2	0,438	0,875	0,750	0,250	1,010	2,375	0,438	0,750	0,500	1,500		1/2	0,438	0,875	0,750	0,250	1.313	2.375	0,438	0,750	0,313	0021	004,1		9	0.438	0.875	0,750	0,250	1,313	0.975	0.438	0,750	0,313	0,500	1,500			L/2
	MUNICH ENGINER E AND N	e [m]	-0,020	0,062	0,041	0,004	0.040	0,072	-0,012	0;050	0,016	0,159		e [m]	-0,008	0,096	0,072	0,006	0,108	0.300	0,004	0,072	0,020	0,036	0,228			10000	0,130	0,104	0,007	0,179	U, 144	0.020	0,092	0,023	0,055	0,232			e [m]
	/ERSITY F CIVIL E DNCRET	[m]	0'00'0	000'0	0,000	0000	3 750	5.300	10,600	10,600	10,600	7,450		[m] Q	0,000	000'0	0,000	000'0	3,750	5.300	10,600	10,600	10,600	9,300	7,450			0000	0.000	0,000	000'0	5,300	100/5	10.600	10,600	10,600	9,300	7,450			[m] Q
	NENT OI	e	0,457	0,813	0,709	0,246	1080	2.303	0,450	0,700	0,297	1,341	400,000	ą	0,446	0,779	0,678	0,245	1,204	2 N75	0,434	0,678	0,293	0,454	1,272	500,000		a 0.434	0.745	0,646	0,243	1,134	795'0	0.418	0,658	0,290	0,445	1,208		600,000	¢
	TECHNIC DEPART	Wall	Wall 1	Wali 2	Wall 3	Wall 4	Vali 5	Wall 6	Wall 10	Wall 11	Wall 12	Wall 8	י ד	Wall	Wall 1	Wall 2	Wall 3	Wall 4	Wall 7	9 Be/W	Wall 10	Wall 11	Wall 12	Wall 9	all 8	분 			Wali 2	Wall 3	Wall 4	Wall 7	c liew	Wall 10	Wall 11	Wall 12	Wall 9	Wall 8		#	Wali

Page 2 / 5

%0

6076

-6076

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY INSTITUTE OF CONCRETE AND MASONRY STRUCTURES

l

Position of the resulting force									700,000	Ŧ
		562,23	Sum	-2614,78	sum					
inside the cross section	14%	83,70	-182,90	-515,218	3,000	1,500	0,355	7,450	1,145	Wall 8
inside the cross section	1%	8,92	-6,15	-76,527	1,000	0,500	0,080	9,300	0.420	Wall 9
inside the cross section	%0	2,59	-2,76	-104,707	0,625	0,313	0,026	10,600	0,286	Wall 12
inside the cross section	2%	14,44	-31,86	-279,497	1,500	0,750	0,114	10,600	0,636	Wall 11
		13,95	-2,69	-68,537	0,875	0,438	0,039	10,600	0,398	Wall 10
inside the cross section	44%	261,92	-313,36	-348,221	4,750	2,375	0,900	5,300	1,475	Wall 6
inside the cross section	9%	52,64	49,17	-236,983	2,250	1,125	0,208	3,750	0,918	Wall 5
inside the cross section	13%	80,73	-97,25	-368,636	2,625	1,313	0,264	5,300	1,049	Wall 7
inside the cross section	0%	0,16	-1,16	-141,974	0,500	0,250	0,008	0000'0	0,242	Wail 4
Inside the cross section	3%	15,04	-23,11	-163,100	1,500	0,750	0,142	0'000	0,608	Wall 3
inside the cross section	3%	15,58	-39,24	~233,855	1,750	0,875	0,168	0,000	0,707	Wall 2
inside the cross section	2%	12,56	-1,39	-77,525	0,875	0,438	0,018	0'000	0,420	Wall 1

Position of the resulting force									800,008	£
		657,79	Sun [-2532,83	Ens					
inside the cross section	15%	108,33	-228,44	-541,466	3,000	1,500	0,422	7,450	1,078	Wall 8
inside the cross section	2%	11,34	-7,87	-66,669	1,000	0,500	0,118	9,300	0,382	Wall 9
inside the cross section	1%	3,71	-3,27	-108,005	0,625	0,313	0,030	10,600	0,282	Wali 12
inside the cross section	3%	18,70	-39,68	-286,902	1,500	0,750	0,138	10,600	0,612	Wall 11
inside the cross section	2%	15,91	-4, 18	-65,146	0,875	0,438	0,064	10,600	0,373	Walt 10
inside the cross section	40%	281,20	-331,28	-299,475	4,750	2,375	1,106	5,300	1,269	Wall 6
inside the cross section	%6	65,88	-63,88	-217,948	2,250	1,125	0,293	3,750	0,832	Wall 5
inside the cross section	14%	98,43	-127,51	-340,858	2,625	1,313	0,374	5,300	0,938	Wall 7
inside the cross section	0%	0,44	-1,39	-139,904	0,500	0,250	0,010	000'0	0,240	Wall 4
inside the cross section	3%	18,75	-29,75	-158,566	1,500	0,750	0,188	0,000	0,562	Wall 3
inside the cross section	3%	20,76	-49,56	-233,795	1,750	0,875	0,212	0:000	0,663	Wall 2
inside the cross section	2%	14,32	-2,65	-74,093	0,875	0,438	0,036	0,000	0,402	Wall 1
S	Proportion UH	a [kN]	M [kNm]	N [kN]	L [m]	L/2	e [m]	D [m]	e	Wall

					ł					
		752,19	- uns	-2464,75	Sum					
inside the cross section	17%	138,94	-281,00	-571,845	3,000	1,500	0,491	7,450	1,009	Mall 8
inside the cross section	2%	14,30	-9,85	-55,233	1,000	0,500	0,178	9,300	0,322	Vall 9
inside the cross section	1%	5,11	-3,87	-111,622	0,625	0,313	0,035	10,600	0,278	Vail 12
inside the cross section	3%	24,11	-48,88	-294,980	1,500	0,750	0,166	10,600	0,584	Vall 11
inside the cross section	2%	18,24	-5,81	-60,611	0,875	0,438	0,096	10,600	0,342	Vall 10
inside the cross section	36%	288,87	-315,87	~267,009	4,750	2,375	1,183	5,300	1,192	Vali 6
inside the cross section	10%	79,46	-76,95	-197,381	2,250	1,125	0,390	3,750	0,735	Vali 5
inside the cross section	14%	114,79	-153,22	-312,435	2,625	1,313	0,490	5,300	0,822	Vall 7
inside the cross section	0%	0,79	-1,66	-137,561	0,500	0,250	0,012	0,000	0,238	Vali 4
inside the cross section	3%	23,51	-37,61	-153,717	1,500	0,750	0,245	0,000	0,505	Vali 3
inside the cross section	3%	27,42	-61,83	-233,225	1,750	0,875	0,265	0,000	0,610	Vall 2
inside the cross section	2%	16,64	-4,15	-69,130	0,875	0,438	0'000	0,000	0,377	Wall 1
z	Proportion Q/H	a [kN]	M [kNm]	N [kN]	۲- [m]	L/2	e [m]	D [m]	a	Wall
Position of the resulting for										

s section s section s section s section s section s section inside the

Annex AH2/H-neg/middle

-1324,94 -465,61 -528,88 -718,50 -243,71 -179,23 -3450,87

|--|

Ŧ	000'006	,		:					Broomion Off	Position of the resulting force
Vali	8	Ē	e B	2	L [m]	N KNJ	M [KWIN]	re [kuv]		:

Page 3 / 5

TECHN	ICAL UNIV	'ERSITY	/ MUNIC	Ŧ						Annex AH2/H-neg/middle			report sce-;	24005005 from 2005-04
DEPAR	TMENT O	F CIVIL DNCRE	ENGINE TE AND	ERING / MASONI	ND GEC RY STRI	DDESY JCTURES								
Wall 1	0.344	0.000	0.094	0.438	0.875	-62,658	-5,89	19,72	2%	inside the cross section				:
Wall 2	0.543	0.000	0.332	0.875	1,750	-231,549	-76,97	36,89	4%	inside the cross section	N [KN]	sumV actual	sumV target	discrepancy in %
Wall 3	0,435	0,000	0,315	0,750	1,500	-149,211	-47,03	30,06	3%	Inside the cross section	-1563,03	-6075	6076	0%
Wail 4	0,235	0,000	0,015	0,250	0,500	-134,810	-2,00	1,29	0%	inside the cross section	-460,12			
Wall 7	0,753	5,300	0,560	1,313	2,625	-288,024	-161,18	123,36	14%	inside the cross section				
Wall 5	0,701	3,750	0,424	1,125	2,250	-182,415	-77,36	86,31	10%	inside the cross section	-755,54			
Wall 6	1,182	5,300	1,193	2,375	4,750	-253,250	-302, 18	291,78	32%	inside the cross section	-142,60			
Wall 10	0,306	10,600	0,131	0,438	0,875	-55,793	-7,32	20,63	2%	Inside the cross section	-134,44			
Wall 11	0,552	10,600	0,198	0,750	1,500	-303,390	-60,04	31,67	4%	inside the cross section	-3646,09			
Wall 12	0,273	10,600	0,040	0,313	0,625	-115,047	-4,60	7,02	1%	inside the cross section				
Wall 9	0,238	9,300	0,262	0,500	1,000	-43,443	-11,38	16,79	2%	inside the cross section				
Wall 8	0,940	7,450	0,560	1,500	3,000	-609,381	-341,44	179,25	20%	inside the cross section				
					uns	-2428,97	Sum	844,76						
±	1000.000													
										Position of the resulting force				
Wall	a	[iii] 0	e [m]	5	۲ ۳	N [KN]	N [KNm]	a [kN]		N	N FYAD	faither Virans	errnV tarnat	dierronancy in %
Wall 1	0,308	0,000	0,130	0,438	0,875	-56,600	-7,35	22,19	2%	inside the cross section	INVI N	SURIV ACTUAL	Sunv Laryer	
Wall 2	0,478	0,00	0,397	0,875	1,750	-231,066	-91,66	45,57	5%	inside the cross section	-1615,14	e/ne-	anta	0.0
Wall 3	0,373	0,000	0,377	0,750	1,500	-145,411	-54,79	35,07	4%	inside the cross section	455,50			
Wall 4	0,232	0,00	0,018	0,250	0,500	-131,553	-2,41	1,89	%0	inside the cross section	-578,35			
Wall 7	0,683	5,300	0,629	1,313	2,625	-265,584	-167,13	130,90	13%	inside the cross section	-/68,12			
Wall 5	0,657	3,750	0,468	1,125	2,250	-169,081	-79,20	94,46	%6	Inside the cross section	-96,65			
Wall 6	1,247	5,300	1,128	2,375	4,750	-259,325	-292,62	301,97	30%	inside the cross section	-134,85			
Wall 10	0,295	10,600	0,142	0,438	0,875	-54,370	-7,73	20,93	2%	inside fite cross section				
Wall 11	0,515	10,600	0,236	0,750	1,500	-312,764	-73,66	41,23	4%	inside the cross section				
Wall 12	0,266	10,600	D,047	0,313	0,625	-118,243	-5,51	9,56	1%	inside the cross section				
Wall 9	0,219	9,300	0,281	0,500	1,000	-37,494	-10,52	14,96	1%	inside the cross section				
Wali 8	0,892	7,460	0,608	1,500	3,000	-655,189	-398,42	218,40	22%	inside the cross section				
					mns	-2436,68	Sum	937,13		••••				
Ï	100,000													
				5	572	AL FLAD	at riving	O RAB	Proportion Off	Position of the resulting torce	N [KN]	sumV actual	sumV target	discrepancy in %
Wall	a 0.205	iui a	e [m] 1 0 123	0.438	L [m]	-55 204	-7.30	22.43	2%	inside the cross section	-1650,82	-6072	6076	%0
C llow	0.440	JUOU	0.426	0.875	1 750	-235.206	-100 10	51,18	5%	inside the cross section	-448,32			
Wall 3	0.345	000	0,406	0.750	1 500	-144,997	-58,80	38,63	4%	inside the cross section	-575,20			
Wall 4	0,227	0000	0,023	0,250	0,500	-127,687	-2,91	2,73	%0	inside the cross section	-747,99			
Wall 7	0,639	5,30(0 0,673	1,313	2,625	~248,565	-167,36	136,15	12%	inside the cross section	-47,90			
Wail 5	0,682	3,751	0 D,443	1,125	2,250	-163,586	-72,50	99,41	%6	inside the cross section	-111,73	1		
Wall 6	1,303	5,30	0 1,072	2,375	4,750	-277,424	-297,51	328,52	30%	inside the cross section	-3581,95			
Wall 1C	0,293	10,60	0 0,144	0,438	0,875	-54,548	-7,87	20,99	2%	inside the cross section				
Wall 11	0,479	10,60	0 0,271	0,750	1,500	-324,384	26'28-	51,84	5%	inside the cross section				
Wall 12	0,259	10,60	0 0,054	0,313	0,625	-120,403	6,49	12,68	1%					
Wall 9	0,161	9,30	0 0,339	0,500	1.000	-30,252	-10,25	14,26	1%					
Wall 8	0,871	7,45,	0 0,629	1,500	3,000	-707,503	-444,95	255,62	23%					
					Ens	-2489,76	Sum	1034,44						
	= 1200.000													
			1						HO notroute	Position of the resulting force				
Wall	ø	۲ ۵	e [m]	5	Ē	N [kN]	M [kwm]	C Ikvi	PTOpussion were	_				

report sce-24005005 from 2005-04-21

Page 4 / 5

Annex AH2/H-neg/middle

inside the cross section inside the cross section

11%

142,52 114,24

> -65,90 -343,71

-225,648

%0

4.71

-4,08 -163,21

-119,050

0,500

0,250 1,313

0,034 0,411

0,000 5,300 3,750

0,216 0,589

Wall 4 Wali 7

0,723

inside the cross section

inside the cross section inside the cross section inside the cross section

inside the cross section inside the cross section

1% 24%

18,25 315.27

1%

11,75

-525.87

-797,98

3,000 Sum

-18,012 -354,557 -118,501

1,000

0,313 0,500 1,500

9,300 7,450

0,244

Wall 9 Vall 8

0,841

1203,05

Sum

-2614,36

inside the cross section

9% 28% 5%

363,20 22,50 70,33

-8,53 -8,07 -7,56

-52,636

-322,070

2,625 2,250 4,750 0,875

1,125 2,375 0,438

-112,57

1,500 0,625

0,750

0,068 0,420 0,659

0,162 1,067 0,318

> 10,600 10,600 10,600

Wall 10 Wall 11 Wall 12

0.433

5,300

1,308 0.275

Wall 6

0,714

Wall 5

Page 5 / 5

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY INSTITUTE OF CONCRETE AND MASONRY STRUCTURES

Annex AH2/H-pos/middle

House 2; H positive

Shear-Walls

N positive Tension N negative Compression Q positive compared to the direction of the horizontal force H Q negative compared to the direction of the horizontal force H e negative compared to the direction of the horizontal force H e positive compared to the direction of the horizontal force H

		-214,21	Ens	-3295,33	Sum					
Inside the cross section	-30%	-60,62	-107,89	-344,93	3,000	1,500	0,313	7,450	1,813	Wall 8
inside the cross section	-3%	-5,10	-4,75	-140,13	1,000	0,500	0,034	8,300	0,534	wall 9
	-2%	-3,92	-0,36	-84,06	0,625	0,313	0,004	10,600	0,317	Wail 12
inside the cross section	-5%	-9,81	-17,00	-229,75	1,500	0,750	0,074	10,600	0,824	Wall 11
inside the cross section	2%	3,62	-6,79	-82,80	0,875	0,438	0,082	10,600	0,520	Wall 10
inside the cross section	-38%	-76,72	472,34	-829,54	4,750	2,375	0,569	5,300	2,944	Wall 6
inside the cross section	-11%	-21,71	-46,28	-356,26	2,250	1,125	0,130	3,750	1,255	Wall 5
inside the cross section	-11%	-22,73	-106,67	-554,72	2,625	1,313	0,192	5,300	1,505	Wall 7
inside the cross section	-1%	-1,54	-0,22	-155,65	0,500	0,250	0,001	0,000	0,251	Wali 4
inside the cross section	-3%	-5,62	-18,59	-193,87	1,500	0,750	0,096	000'0	0,846	Wall 3
inside the cross section	-7%	-13,38	-25,18	-231,64	1,750	0,875	0,109	0,000	0,984	Wall 2
inside the cross section	2%	3,32	-6,55	-91,99	0,875	0,438	0,071	0,000	0,509	Wall 1
z	Proportion Q/H	Q [KN]	M [kNm]	N [KN]	۲ [۳]	C 2	e [m]	[w] 0	đ	Wall
Position of the resulting force									200,000	Ŧ
		-117,26	Sum	-3209,87	Sum					
inside the cross section	-43%	-42,81	-71,97	-366,28	3,000	1,500	0,197	7,450	1,697	Wali 8
inside the cross section	-3%	-3,38	-3,41	-132,20	1,000	0,500	0,026	9,300	0,526	Wall 9
inside the cross section	-3%	-3,12	0,02	-86,61	0,625	0,313	000'0	10,600	0,312	Wall 12
	-7%	-6,81	-11,02	-236,07	1,500	0,750	0,047	10,600	0,797	Wall 11
inside the cross section	5%	4,86	-5,62	-81,03	0,875	0,438	0,069	10,600	0,507	Wall 10
inside the cross section	-33%	-33,44	-369,82	-768,54	4,750	2,375	0,481	5,300	2,856	Wall 6
inside the cross section	-13%	-12,59	-34,50	-341,56	2,250	1,125	0,101	3,750	1,226	Wall 5
inside the cross section	-10%	-10,17	-81,20	-531,43	2,625	1,313	0,153	5,300	1,465	Wall 7
inside the cross section	-1%	-1,34	-0,05	-153,76	0,500	0,250	0,000	000'0	0,250	Wall 4
inside the cross section	-3%	-3,09	-13,46	-190,06	1,500	0,750	0,071	000'0	0,821	Wall 3
inside the cross section	-10%	-9,82	-17,25	-232,12	1,750	0,875	0,074	000'0	0,949	Wali 2
inside the cross section	4%	4,43	-5,58	-90,21	0,875	0.438	0,062	0'000	0,499	Wali 1
z	Proportion Q/H	Q [kv]	M [kNm]	INVI N	۲ [m]	1/2	e [m]	[m] Q	rş.	Mall
Position of the resulting force									100,000	Ŧ

transverse walls

report sce-24005005 from 2005-04-21

H= 300,000

Page 1/5

DEPAR	TMENT O	F CIVIL E	MUNICI ENGINEE E AND N	1 ERING A AASONF	ND GEC	JDESY JCTURES				Annex Anz/rt-bos/maale		
Itelki	a	[m] [ja I	2	<u>ال</u>	BAM N	M [kNm]	o fkN1	Proportion Q/H	osition of the resulting force N	-468,80	
Wall 1	0,518	000'0	0,080	0,438	0,875	-93,72	-7,52	2,21	1%	inside the cross section	-406,92	
Wall 2	1,018	000'0	0,143	0,875	1,750	-231,27	-33,09	-16,95	-6%	inside the cross section	-613,23	
Wall 3	0,870	0,000	0,120	0,750	1,500	-197,66	-23,74	-8,14	-3%	inside the cross section inside the cross section	-443,70 -229 88	
+ 11544	1502.0	2005 2	0.020	1 312	2 876	577 98	-132 18	35.24	-12%	inside the cross section	-2694,10	
Wall 5	1 282	3.750	0.157	1 125	2.250	-371,13	-58,12	-30,81	-10%	inside the cross section		
Wall 6	3,021	5,300	0,646	2.375	4,750	-890,96	-575,47	-119,85	-40%	inside the cross section		
Wail 10	0,532	10,600	0,094	0,438	0,875	-84,57	-7,95	2,41	1%	inside the cross section		
Wall 11	0,853	10,600	0,103	0,750	1,500	-223,59	-22,98	-12,80	4%			
Wall 12	0,322	10,600	0,009	0,313	0,625	-81,42	-0,75	4,73	-2%	inside the cross section		
Wall 9	0,541	9,300	0,041	0,500	1,000	-148,06	-6,10	-6,80	-2%	inside the cross section		
Wall 8	1,943	7,450	0,443	1,500	Sum Supp	-323,44 -3381,40	-143,38 Sum	-/8//0	×07-			
					1		1					
£	400,000									osition of the resulting force		
Wall	B	[m]	e [m]	L/2	L [m]	N [kN]	M [kNm]	Q [KN]	Proportion Q/H	2		
Wali 1	0,527	000'0	0,089	0,438	0,875	-95,39	-8,50	1,12	%0	inside the cross section		
Wall 2	1,053	0,000	0,178	0,875	1,750	-231,08	-41,05	-20,53	-5%	inside the cross section	TITLE TOTAL CONTRACT OF THE TOTAL CONTRACT.	W torret disconnect in %
Wall 3	0,894	0,000	0,144	0,750	1,500	-201,45	-28,93	-10,66	-3%		N KNJ SUMVACIUAL SUN	
Wall 4	0,254	0,000	0,004	0,250	0,500	-159,50	-0,56	-1,94	0%			or 0
Wall 7	1,575	5,300	0,263	1,313	2,625	-601,27	-158,01	-41,14	%7L-		11,10,11 202 40	
Wall 5	1,306	3,750	0,181	1,125	2,250	-386,33	-70,04	-162 an	-41%	inside the cross section	680.891	
Wall 10	0.543	10.600	0,106	0,438	0,875	-86,33	-9,13	1,21			-465,97	
Wall 11	0,883	10,600	0,133	0,750	1,500	-217,62	-29,03	-15,76	**	inside the cross section	-235,51	
Wall 12	0,327	10,600	0,014	0,313	0,625	-78,59	-1,13	-5,54	-1%	inside the cross section	-2606,61	
Wall 9	0,548	8,300	0,048	0,500	1,000	-156,00	-7,46	-8,50	-2%	inside the cross section		
Wall 8	2,087	7,450	0,587	1,500	3,000	-302,09	-177,33	-97,05	-24%	inside the cross section		
					Sum	-3468,72	Sum	-408,21				
1	500 000											
Ļ ÷										osition of the resulting force		
Wall	в	۵ س	e [m]	L12	۔ ۲	N [kN]	M [kNm]	Q [KN]	Proportion WH	2		
Wall 1	0,536	0,000	0,098	0,438	0,875	-97,01	-9,53	-0,03	%0	inside the cross section	N I KNIT Subjection of the support	nV tarret discrenancy in %
Wall 2	1,089	0000'0	0,214	10,8/5	1,/30	99'997-	48,84-	50' 4 2-	%.ç	inside the cross section	in third Sunty Section Sur	
Wall 3	0,917	0,000	19L'N	ns, ,	1,500	87'en?-	-34,30	-13,35	%? **?		- 473 & 4	
Wall 4	0,255	0000	900'0	0,250	0,500	*161,35 202 00	-0,/3	21 JD	0.0 10%	inside the cross section	-379.57	
2 ILBVY	1,000	000'0	0270	1 1010	2 7KD	07'07	100,001	42 24	-10%	inside the cross section	-587,69	
Wall 6	3.149	5.300	0.774	2.375	4.750	-1017,50	-787,85	-208,93	42%	inside the cross section	-485,50	
Wall 10	0,555	10,600	0,117	0,438	0,875	-88,44	-10,37	-0,16	0%	inside the cross section	-240,93	
Walt 11	0,917	10,600	0,167	0,750	1,500	-211,41	-35,39	-19,14			-2511,56	
Wall 12	0,333	10,600	0,021	0,313	0,625	-75,05	-1,55	-6,49	-1%	inside the cross section		
Wall 9	0,554	9,300	0.054	0,500	1,000	-164,10	-8,89	-10,41	-2%	inside the cross section		
Wall 8	2,191	7 450	0,691	1,500	3,000	-285,05	-196,83	-108,91	-22%	inside the cross section		
					Sum	-3563,60	Sum	-504,99				
Ŧ	= 600,000											

(__)

Page 2 / 5

.

DEPAR	TMENT OF JTE OF CC	F CIVIL EI DNCRETE	NGINEE AND M	RING AI ASONR	VD GEOI Y STRU(DESY CTURES					
Wall	10	[m] Q	e [m]	12	[m]	N [kN]	[mNx] M	a [M]	^o roportion Q/H	Position of the resulting force N	/0 mi transmentit
Wall 1	0,545	000'0	0,107	0,438	0,875	-98,64	-10,58	-1,22	%0	inside the cross section	N [KN] sumV actual sumV target discrepancy in 76
Wall 2	1,126	0,000	0,251	0,875	1,750	-230,37	-57,87	-28,32	-5%	inside the cross section	
Wall 3	0,941	0,000	0,191	0,750	1,500	-209,13	-39,86	-16,10	-3%	inside the cross section	11/7/tm 26/84
Wall 4	0,256	0,000	0,006	0,250	0,500	-163,33	-0,91	-2,38	%0	inside the cross section	104401 273 an
Wall 7	1,640	5,300	0,328	1,313	2,625	-650.05	-212,89	-75,83	-13%	inside the cross section	0.0.00
Wall 5	1,353	3,750	0,228	1,125	2,250	-418,44	-95,24	-60,00	-10%	inside the cross section	
Wall 6	3,205	5,300	0,830	2,375	4,750	-1084,04	-899,21	-257,02	43%	inside the cross section	102 SOF C
Wall 10	0,566	10,600	0,129	0,438	0,875	-90,82	-11,67	-1,66			n / fane-
Wall 11	0,955	10,600	0,205	0,750	1,500	-204,74	-41,97	-22,82	-4%	inside the cross section	
Wall 12	0,341	10,600	0,028	0,313	0,625	-70,91	-1,99	-7,55	-1%	inside the cross section	
Wail 9	0,560	9,300	0,060	0,500	1,000	-172,35	-10,39	-12,45	-2%	inside the cross section	
Wall 8	2,252	7,450	0,752	1,500	3,000	-272,48	-204,82	-116,23	-19%	inside the cross section	
					Sum	-3665,29	Sum	-601,57			
μ	200'002									Booleinn of the resulting force	
1Wall	đ	ը քայ	e îmi	1/2	L [m]	N IKNI	M [kNm]	a [kN]	Proportion Q/H	N	N [KN] sumV actual sumV target discrepancy in %
1 Mail 4	10 584	0000	0 117	0.438	0.875	-100.17	-11 69	-2,43	%0	inside the cross section	-151,53 <u>-6075</u> 6076 UV
C IICIVI	1 165	0000	0.290	0.875	1 750	-229,84	-66,72	-32,47	-5%	inside the cross section	-473,28
2 1074	1796 U	0000	0.214	0.750	1 500	-213,00	45,62	-18,97	%E,	inside the cross section	-349,55
Wall 4	0.257	0000	0,007	0,250	0,500	-165,06	-1,09	-2,61	%0	inside the cross section	-659,06
Wali 7	1,671	5,300	0,358	1,313	2,625	-675,64	-242,01	-90,85	-13%	inside the cross section	-513,02
Wall 5	1,374	3,750	0,249	1,125	2,250	435,37	-108,49	-70,66	-10%	inside the cross section	12 TOTA
Wall 6	3,255	5,300	0,880	2,375	4,750	-1154,09	-1015,14	-306.49	-44%	inside the cross section	8¢'1872*
Wall 10	0,577	10,600	0,140	0,438	0,875	-93,40	-13,03	-3,21	0%	inside the cross section	
Wall 11	0,996	10,600	0,246	0'150	1,500	-198,09	-48,81	-26,68	-4%	inside the cross section	
Wall 12	0,350	10,600	0,037	0,313	0,625	-65,77	-2,44	-8,66	%1-	inside the cross section	
Wall 9	0,566	9,300	0,066	0,500	1,000	-180,73	-11,98	-14,56	-2%	inside the cross section	
Wall 8	2,260	7,450	0,760	1,500	3,000	cn'007-	10,202-	-170/14	57.73 -		
					uns Sum	-3777,23	Sum	-698,04			
Ŧ	= 800,000									Danisian af tha meridina force	
	Ċ	[m] ()	a ľml	6/ 1	[[m]	N RANJ	M [kNm]	Q IKNI	Proportion Q/H		
Wall 1	0.564	0.000	0.126	0.438	0.875	-101.75	-12,82	-3,71	%0	inside the cross section	
Wali 2	1 204	0.000	0.329	0,875	1,750	-229,16	-75,44	-36,62	-5%	inside the cross section	
Wall 3	0.988	0.000	0,238	0,750	1,500	-216,74	-51,47	-21,99	-3%	inside the cross section	N [KN] SumV actual SumV target discrepancy in 70
Wall 4	0.258	0.00	0,008	0,250	0,500	-167,16	-1,29	-2,84	%0	inside the cross section	-52,19 -5950 50/05 -2.70
Wall 7	1,700	5.300	0.387	1.313	2,625	-701,62	-271,53	~106,76	-13%	inside the cross section	-473,23
Wall 5	1,395	3.750	0,270	1,125	2,250	452,38	-121,92	-81,95	-10%	inside the cross section	-333,64
Wall 6	3,298	5,300	0,523	2,375	4,750	-1224,44	-1129,79	-356,93	-45%	inside the cross section	- 54.0 87
Wall 10	0,568	10,600	0,150	0,438	0,875	-96,04	-14,42	4,94	-1%	inside the cross section	-524,19 Are Are
Wall 11	1,038	10,600	0,288	0,750	1,500	-191,36	-55,19	-30,45	-4%	inside the cross section	90°007-
Wall 12	2 0,361	10,600	0,048	0,313	0,625	-60,53	-2,91	-9,93	-1%	inside the cross section	-2195,16
Wali 9	0,572	9,300	0,072	0,500	1,000	-189,22	-13,59	-16,86	-2%	inside the cross section	
Wall 8	2,254	7,450	0,754	1,500	3,000	-261,13	-196,84	-121,53	%61-		
					- uns	-3891,52	Sum	-794,52			
1 	1- QUU UUU									-	

report sce-24005005 from 2005-04-21

000'006 =H

Page 3 / 5

AL UNIVERSITY MUNICH MENT OF CVIL ERGINISERING AND GEODESY IE OF CONCRETE AND MASONRY STRUCTURES E OF CONCRETE AND MASONRY STRUCTURES E OF CONCRETE AND MASONRY STRUCTURES a DImi e imi 1.01 0.000 0.010 0.010 0.010 0.010 0.010 0.010 0.020 0.010 0.010 0.010 0.020 0.010 0.020 0.010 0.020 0.010 0.010 0.020 0.010 0.010 0.020 0.010 0.	Annex AH2/H-pos/middle 2005-04	Position of the resulting force N	inside the cross section	inside the cross section	Inside the cross section 49,80 -6075 50/6 -076	inside the cross section -533.01	inside the cross section -260,80	inside the cross section -2060,62	inside the cross section	inside the cross section	inside the cross section		Position of the resulting force	2	inside the cross section Nickel sumV actual sumV target discrepancy in x	inside the cross section	inside the cross section	inside the cross section	-558 45 -			frigide frie cross securiti	inside the cross section	inside the cross section	inside the cross section		Position of the resulting force	N KNI sumV actual sumV target discrepancy in %	inside the cross section 23,88 6078 6076 0.0	inside the cross section	inside the cross section	Inside the cross section 4-40.4 - 4-40.				inside the cross section		insude first cross section	instant the second s			
ALUNUCERSITY MUNICH ALUNUCERSIS ALUNUCERSIS <td></td> <td>[kN] Proporti</td> <td>-6,10 -1</td> <td>40,52 -51</td> <td>-25,30 -3</td> <td>-3,10 0%</td> <td>-123,80 -14</td> <td>-94,15 -10</td> <td>404,03 -45</td> <td>-6,78 -1</td> <td>-32,94 -4</td> <td>-11,19 -1</td> <td>-19,32</td> <td>-124,88 -14</td> <td>31,12</td> <td></td> <td>[kN] Proport</td> <td>-6,83 -1</td> <td>-43,18 4</td> <td>-29,12</td> <td>-3,41 0</td> <td>-144,58 -14</td> <td>-108,88 -1</td> <td>441,02</td> <td>-9,06 </td> <td>-12.45</td> <td>-22,31 -2</td> <td>-130,12</td> <td>83,84</td> <td></td> <td>[kN] Proport</td> <td>-8-90</td> <td>-44,43</td> <td>-32,90</td> <td>-3,77 0</td> <td>-155,54</td> <td>-125,12</td> <td>-476,61</td> <td>-11,36</td> <td>-33,52</td> <td>-12,99</td> <td>-25,67</td>		[kN] Proporti	-6,10 -1	40,52 -51	-25,30 -3	-3,10 0%	-123,80 -14	-94,15 -10	404,03 -45	-6,78 -1	-32,94 -4	-11,19 -1	-19,32	-124,88 -14	31,12		[kN] Proport	-6,83 -1	-43,18 4	-29,12	-3,41 0	-144,58 -14	-108,88 -1	441,02	-9,06 	-12.45	-22,31 -2	-130,12	83,84		[kN] Proport	-8-90	-44,43	-32,90	-3,77 0	-155,54	-125,12	-476,61	-11,36	-33,52	-12,99	-25,67
AL UNIVERSITY MUNICH MENT OF CIVIL ENGINEERING AND GEODESY TE OF CONCRETE AND MASONRY STRUCTURES a Dimi emi usi visit 0.577 0.000 0.138 0.438 0.875 103.27 1.240 0.000 0.506 0.415 1.313 2.825 7.728.05 1.240 0.000 0.960 0.961 0.000 168.03 1.073 0.000 0.961 0.075 0.965 1.500 7.800 168.03 0.3327 5.300 0.941 1.313 2.825 7.728.05 0.537 0.000 0.91 0.000 1.61 0.448 0.75 0.057 0.0 0.500 0.91 0.000 0.075 0.500 1.600 1.616 0. 0.577 9.300 0.971 0.500 1.000 1.975 0. 0.577 9.300 0.971 0.500 1.000 1.975 0. 0.577 9.300 0.071 0.500 1.000 1.975 0. 0.571 9.300 0.071 0.550 1.500 2.264 0. 0.071 0.500 0.071 0.550 1.500 2.264 0. 0.070 0.071 0.550 0.500 1.000 2.265 0. 0.071 0.500 0.071 0.550 0.500 1.000 2.265 0. 0.070 0.000 0.071 0.550 0.500 1.000 2.265 0. 0.071 0.500 0.071 0.550 0.500 1.000 2.265 0. 0.000 0.071 0.550 0.500 1.000 2.265 0. 0.000 0.071 0.550 0.500 0.073 0.750 0.500 1.000 2.265 0. 0.000 0.071 0.550 0.500 0.073 0.750 0.500 1.000 2.265 0. 1.750 0.000 0.071 0.250 0.500 1.700 2.207,00 0. 1.750 0.000 0.071 0.250 0.500 0.773 0. 1.000 0.011 0.071 0.250 0.500 1.700 2.203.00 1.000 2.265 0. 1.000 0.011 0.011 0.025 0.0500 0.717 0. 0.650 0.000 0.011 0.025 0.0500 0.717 0. 1.000 0.011 0.025 0.0500 0.717 0. 1.000 0.011 0.025 0.0500 0.717 0. 1.000 0.012 0.250 0.500 0.717 0. 0.500 0.013 0.010 0.013 0.250 0.500 0.717 0. 1.000 0.012 0.250 0.500 0.717 0. 1.000 0.012 0.250 0.500 0.717 0. 0.500 0.013 0.010 0.013 0.0100 0.1100 0. 1.000 0.0100 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.0		kNm] Q	-14,01	-83,69	-57,59	-1,49	-302,36	-135,95	1234,69	-15,90	-59,98	-3,36	-15,28	-195,21	-88- 		khm] Q	-15,48	-90,92	-64,75	-1,73	-338,52	-152,64	1330,77	-17,72	-01,00 23 78	-17,28	-192,69	e-		[kNm] Q	-17,11	-95,96	-71,90	-2,02	-3/6,03	-170,54	-1412,61	-19,64	-64,22	3,88	-19,50
AL UNIVERSITY MUNICH MENT OF CIVIL ENGINEERING AND GEODES TE OF CONCRETE AND MASONRY STRUCTU MENT OF CIVIL ENGINEERING AND GEODES a Dimi emi Luz Lmi NR 0.577 0.000 0.138 0.438 0.875 11 1.240 0.000 0.266 0.875 1.750 22 1.240 0.000 0.965 0.875 1.750 22 0.550 0.965 0.875 1.750 22 0.550 0.965 0.971 0.550 1.500 20 0.577 9.300 0.071 0.550 1.500 20 0.577 9.300 0.071 0.550 1.500 20 0.577 9.300 0.071 0.550 1.500 20 0.570 0.000 0.011 0.025 0.550 1.500 20 0.571 9.300 0.071 0.550 1.500 20 0.571 9.300 0.071 0.550 1.500 20 0.571 9.300 0.071 0.550 1.500 20 0.571 1.550 0.070 0.013 0.875 1.750 20 0.513 10,600 0.0719 0.250 0.500 20 1.268 9.300 0.0719 0.250 0.500 20 1.268 0.000 0.0719 0.250 0.500 20 0.513 10,600 0.0719 0.250 0.500 20 0.513 10,600 0.0719 0.250 0.500 20 0.513 10,600 0.0719 0.250 0.500 20 1.200 0.0719 0.250 0.500 20 1.128 0.000 0.011 0.0710 0.250 0.500 20 1.128 0.000 0.0119 0.0710 0.250 0.500 20 1.128 0.000 0.0119 0.0710 0.250 0.500 20 1.128 0.000 0.011 0.000 0.0110 0.0710 0.250 0.500 20 1.128 0.000 0.0110 0.0100 0.0110 0.0100 0.0110 0.0100 0.0110 0.0100 0.0110 0.0100 0.0110 0.0100 0.0110 0.0100 0.0110 0.0100 0.0110 0.0100 0.0110 0.0100 0.0110 0.0100 0.0110 0.0100 0.0110 0.0100 0.0110 0.0100 0.0110 0.0100 0.010	RES RES	ũ m In	03,27	29,05	20,58	69,12	28,57	69,94	97,63 -1	98,51	86,93	54,92	97,95	58,70	1,15 S		I W [N	05,23	230,82	25,14	171,50	159,69	189,53	357,38	101,01	00'20	207,94	256,61	6,35 S		W IN	107,37	235,08	230,46	173,99	793,30	509,70	414,17	101,97	179,13	-44,33	218,62
AL UNIVERSITY MUNICH MENT OF CIVIL ENGINEERING AND (E OF CONCRETE AND MASONRY S a D Imi e (m) <u>12</u> Lm 0.573 0,000 0,136 0,438 0.8 1,240 0,000 0,016 0,260 1,50 1,240 0,000 0,016 0,250 0,55 1,414 3,750 0,289 1,125 2,23 0,577 9,300 0,952 2,376 4,7 0,577 9,300 0,977 0,313 2,6 0,577 9,300 0,077 0,313 2,6 0,577 9,300 0,077 0,313 2,6 1,788 5,300 0,147 0,438 0,8 1,788 5,300 0,147 0,438 0,8 1,788 5,300 0,147 0,438 0,8 1,788 5,300 0,147 0,438 0,8 1,788 5,300 0,147 0,438 0,1 0,577 9,300 0,077 0,313 2,6 1,788 5,300 0,147 0,438 0,1 1,788 5,300 0,147 0,438 0,1 1,788 5,300 0,147 0,438 0,1 1,788 5,300 0,147 0,438 0,1 1,788 5,300 0,014 0,120 0,155 0,1 0,563 9,300 0,014 0,12 0,155 2,1 1,000,000 1,1080 0,116 0,010 0,118 0,0 1,000 0,011 0,125 0,13 1,000,000 0,148 1,313 2,2 1,000,000 0,148 1,313 2,2 1,000 0,011 0,250 0,1 1,000 0,011 0,250 0,1 1,000 0,012 0,215 1,125 2,2 2,251 7,450 0,071 0,312 0,150 1,1 1,000,000 0,148 1,313 2,2 1,000 0,010 0,010 0,148 0,011 0,2 1,000 0,010 0,010 0,148 0,011 0,2 1,000 0,010 0,010 0,010 0,15 1,000 0,010 0,010 0,010 0,15 1,000 0,010 0,010 0,010 0,010 0,15 1,000 0,010	3EODES TRUCTU	N (K	75 -1	50	00	00	25 -7	50 4	50 -12	.75	-1-	25 .		00	-401		N [375 -1	750 -2		5001	525 -7	550	750 -15	375 -1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2000	000	5 7		լի իլ	875 -	750	500	200	625	250	750 -1	875 -	200	625	-
AL UNIVERSITY MUNICH MENT OF CIVIL ENGINEERIN MENT OF CIVIL ENGINEERIN MENT OF CIVIL ENGINEERIN (1,577 0,000 0,135 0,04 1,240 0,000 0,0135 0,04 1,240 0,000 0,0195 0,04 1,240 0,000 0,0195 0,04 1,240 0,000 0,0195 0,04 1,240 0,000 0,0195 0,04 1,256 5,300 0,0415 1,05 0,577 10,600 0,011 0,0 0,577 10,600 0,011 0,0 0,577 10,600 0,017 0,0 0,573 10,600 0,017 0,0 0,573 10,600 0,017 0,0 0,573 10,600 0,017 0,0 0,573 0,000 0,012 0,0 1,058 5,300 0,098 0,0 0,533 1,0600 0,012 0,0 1,050 0,000 0,012 0,0 1,050 0,000 0,012 0,0 0,012 0,000 0,012 0,0 1,000 0,012 0,0 0,012 0,000 0,012 0,0 1,000 0,012 0,0 0,012 0,0 0,012 0,0 0,012 0,0 0,000 0,012 0,0 0,000 0,000 0,0 0,000 0,0 0,000 0,0 0,000 0,0 0,0	3 AND (NRY S'	L L	38 0,8	75 1.7	50 1,5	50 0,5	13 2,6.	25 2.2	75 4,7	38 0,8	50 1,5	13 0.6	00 1,0	00 3,0	Sun		L [m	38 0,8	175 1,7	50 1,5	50 0.5	13 2.6	125 2,2	375 4.1	138 0.5		201	3.0	Su		E L	438 0,1	375 1.	750 1,1	250 0.	313 2,	125 2,	375 4,	438 0,	750 1.	313 0,	500 1,
AL UNIVERSITY MUNI MENT OF CIVIL ENGIN MENT OF CIVIL ENGIN 0.577 0.0000 0.13 1.240 0.0000 0.00 1.240 0.0000 0.00 0.577 0.0000 0.00 1.728 0.000 0.00 0.599 10.600 0.00 0.590 0.00 0.577 9.300 0.00 0.590 0.00 0.500 0.000 0.000 0.00 0.500 0.000 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.500 0.000 0.000 0.000 0.000 0.000 0.500 0.0000 0.000	CH EERING MASO	5	10 140	5 0,87	1 0.75	9 0,25	5 1,3′	9 .1,12	2 2,3	11 0,4	3 0,75	1 0.3	7 0,50	5 1,51			1.2	7 0,4	14 0.8	18 0,7	0,2	1,3	1,1	30 2,3	75 0,4	10 10	0.5	1.5			172	59 0,4	38 0,8	12 0,7	12 0,2	74 1,	35 1,1	99 2.2	93 0,4	59 0.1	88 0.	° 68
AL UNIVERSIT MENT OF CIVIL IE OF CONCRE a D Iml 0.573 0.00 1.240 0.00 0.599 0.00 0.577 5.30 0.577 9.30 0.577 9.30 0.00 0.577 9.30 0.577 9.30 0.00 0.577 9.30 0.00 0.577 9.30 0.00 0.577 9.30 0.00 0.00 0.577 9.30 0.00 0.00 0.577 9.30 0.00 0.00 0.577 9.30 0.00 0.00 0.577 9.30 0.00 0.00 0.00 0.00 0.577 9.30 0.00	Y MUNI ENGIN	e [m]	0 0,13	0 0,364	0 0,26	0 0'00	0 0,41	0 0,28	0 0,95.	0 0,16	0 0,32	0.06	0.07	0,75			e [m]	0 0,14	0,39	10 0,28	10,0 0.01	00 0,44	50 0,31	30 0,95	0,17		10,00	50 0.75			e [m]	00 0,1£	00 0,4C	00 0,3:	0'0 00	00 0,4	50 0,3;	00 0'3	00 0,1:	00 0,3	0'0	00
AL UNI MENT O MENT O MENT O 0.577 1,240 1,240 1,240 1,240 1,240 1,241 1,243 1,414 1,414 1,414 1,417 1,268 1,255 1,255 1,255 1,268 0,567 1,068 0,567 1,268 1,775 1,	SIT VIL RE	[m]		0.001	0,00	0,00	5,30	3,75	5,30	10,60	10,60	10.60	9,30	7,45			D[m]	000	00'0	00 0	00'0	5,30	3,75	5,30	10,60	10,60	9.30	7.45			[m] Q	0.0	0,00	0,01	0'0	5,31	3,7,6	5,31	10,61	10,61	10,61	<u>6</u> 3
	AER ONC	0		L 1	1	1	Ŀ.	L	£	_	±		1	-				_	_						- C	~ I /	3 8 m	21 5				-			191	~ I	ЯI	. V I	. O i	വി	ا فيت	80

Annex AH2/H-pos/middle

í j

report sce-24005005 from 2005-04-21

Page 4 / 5

H= 1200,000

repart sce-24005005 from 2005-04-2			factors and forcet discrementy in %														Management Arrest Management	V actual Sumv Larger discrepancy III /0	-6079 60/69													V actual sumV target discrepancy in %	-6075 6076 0%											
					298,59	-456,92	-238,21	-462,13		-275.71	-1689,73								305,52	-444,91	-192,83		1 1/200-	GC CDXF.								N IKN] Sum	410.34	50 85P	-170.06	403 09-	-561,60	-286,64	-1449,28					
Annex AH2/H-pos/middle	Position of the resulting force N	inside the cross section	inside the cross section	inside the cross section	inside the cross section	inside the cross section	inside the cross section	inside the cross section	inside the cross section	inside the cross section	inside the cross section	inside the cross section	inside the cross section		Position of the resulting force	N	inside the cross section	inside the cross section	inside the cross section	inside the cross section	inside the cross section	inside the cross section	inside the cross section	tionas according the second		inside the cross section	inside the cross section			Position of the resulting force	anijene sesse sult states	inside the cross section	incide the proce section		inside the cross section	incide the proce caning	inside the cross section	inside the cross section	inside the cross section	incide the cross section	inside the cross section	Inside the cross section		
	reportion O/H	-1%	-4%	-3%	%0	-16%	-12%	-43%	-1%	-3%	-1%	-2%	-12%			Proportion Q/H	-1%	-4%	-3%	%0	-16%	-13%	-41%	-1%	-3%	-1%	-12%			Brancetion O(H		-1%	97. 1 -	\$7	%0 %27	8/11-	- 14.70	402	-170	er >-	-1.72	-17%	AV 447 -	
	a [kN]	-11,27	-46,81	-35,97	-4,19	-188,46	-143,16	~510,35	-13,84	-35,98	-12,59	-29,58	-144,21	-1176,42		a [kv]	-14,15	-49,95	-37,84	4,85	-210,93	-164,62	-526,59	-15,30	-35,58	-11,94	-35,15	10001	-1253,54		[ATA] M	-16,09	AR'90-	40,97	-5,26	00'077-	-1/6,02	01 01 01	00'01-	47'70	-16,42	161.85	4267 20	-1-30'30C'-
	M [kNm]	-19,01	-102,63	-78,55	-2,33	-414,44	-190,10	-1488,17	-21,80	-68,67	-3,55	-22,06	-194,04	Ens		M [kNm]	-21,94	-111,38	-85, 16	-2,82	-461,54	-213,31	-1556,45	-24,53	-70,10	-2,96	-192,221		Sum		M [KIVI]	-23, 19	-1 20, 20		-3,10	190,084-	RJ'027-	02 20	00'07-	1 1/7/-	20,5-	12,02-	471 J.2.	11100
DESY	N [kN]	-109,05	-239,61	-237,96	-176,82	-831,21	-531,90	-1458,56	-100,77	-173,27	-41,51	-230,52	-255,01	-4386,21		N [kN]	-103,70	-247, 13	-252,63	-180,88	-882,83	-561,65	-1455,30	-85,47	-168,02	-36,89	-247,52	221222	4486,56		N KN	-106,41	549,59	-259,96	-183,58	19,419-	-581,17	00'070'-	19,45-	-104,10	10,55-	4-0' JC7-	33 3007	00'0299-
ND GEC XY STRL	[[]	0,875	1,750	1,500	0,500	2,625	2,250	4,750	0,875	1,500	0,625	1,000	3,000	uns		L [m]	0,875	1,750	1,500	0,500	2,625	2,250	4,750	0,875	1,500	0,625	1,000	200,0	Sum		Ē.	0,875	1.750	1,500	0,500	2,625	2,250	4 / 50	C/2'0	Inne'l	0,625	000 0	onn's	SUR
H RING A ASONF	172	0,438	0,875	0,750	0,250	1,313	1,125	2,375	0,438	0,750	0,313	0,500	1,500			L12	0,438	0,875	0,750	0,250	1,313	1,125	2,375	0,438	0,750	0,313	0,500	2000'1	•	1	5	0,438	0,875	0,750	0,250	1,313	1,125	2,5/5	0,435	na) na	0,313	0,500	nnc'L	
MUNICH NGINEE E AND A	e [m]	0,174	0,428	0,330	0,013	0,499	0,357	1,020	0,216	0,396	0,086	0,026	0,761			e [m]	0.212	0,451	0,337	0,016	0,523	0,380	1,070	0,287	0,417	0,080	0,105	1710			e	0,218	0,476	0,349	0,017	0,532	0,389	1,0691	0,285	0,443	690'0	011.0	4//1	
ERSITY CIVIL E	[m] Q	0000'0	0,000	0,000	0,000	5,300	3,750	5,300	10,600	10,600	10,600	9,300	7,450			D	0.000	0000	0,000	0000	5,300	3,750	5,300	10,600	10,600	10,600	9,300	nc+°)			<u>ت</u> ق ۵	0000	000'0	000'0	000'0	5,300	3,750	6,300	10,600	10,600	10,600	9,300	7,450	
AL UNIVI AENT OF E OF CO	10	0,612	1,303	1,080	0,263	1,811	1,462	3,395	0,654	1,146	0,398	0,596	2,261		1300,000	1	0.649	1 326	1,087	0,266	1,835	1,505	3,445	0,725	1,167	0,393	0,605	7777	(400 000		в	0,655	1,351	1,099	0,267	1,844	1,514	3,444	0,723	1,193	0,402	0,6101	2,274	
TECHNIC DEPARTI INSTITUT	Wall	Wall 1	Wall 2	Wali 3	Wall 4	Wall 7	Wall 5	Wall6	Wall 10	Wall 11	Wall 12	Wall 9	Wall 8	1	Ŧ	Wall	Mail 1	Wall 2	Wall 3	Wall 4	Wall 7	Wall 5	Wall 6	Wali 10	Wall 11	Wall 12	Wall 9	A liew	Ľ		Wall	Wall 1	Wall 2	Wall 3	Wall 4	Wall 7	Wall 5	Wall 6	Wall 10	Wail 11	Wall 12	Wall 9	Wall 8	

 $\left(\begin{array}{c} \\ \\ \end{array} \right)$

(___)

repart sce-24005005 from 2005-04-21

Page 5 / 5

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY INSTITUTE OF CONCRETE AND MASONRY STRUCTURES

report sce-24005005 from 2005-04-21

(

Annex AH2-mod/H-neg/base

House 2-modified; H negative

Shear-Walls

transverse walls

N positive Tension N negative Compression Q positive compression A negative compared to the direction of the horizontal force H a negative compared to the direction of the horizontal force H e negative compared to the direction of the horizontal force H

Position of the resulting force Position of the resulting force inside the cross section 2 Proportion Q/H Proportion Q/H 21% 22% 3% 1% 3% 3% -1% %0 12% **0%** %0 2% 8% 4% 3% 4% % 21% %8 -1% 5% 42,98 15,26 1,84 5,23 7,53 3,04 -0.39 12,48 0,24 0,48 5,60 7,64 41,81 1.64 -0,58 3,46 -0,64 21,64 6,71 o [Mai] Q [kN] 49,52 -99, 11 -46, 08 -13,52 -26,53 -8,32 -6, 19 0,23 -33,25 -2,99 0,10 -9,24 -5.74 -7,88 -30,66 -0,50 -158,11 -7.34 -1.47 -63,91 -21,01 M [kNm] M [kNm] Sum -405,497 -138,126 -291,260 -457,615 -102,989 -318,518 -328,230 -81,808 -69,878 -172,072 -164,751 -141,610 -437,513 ~100,608 -95,906 -302,988 -264,350 -262,609 -72,678 -57,902 -2389,59 N [KN] N [kn] 0,500 2,625 2,250 3,000 1,500 0,500 2,625 2,250 1,000 1,500 1,750 1,000 0,625 0,875 3,000 1,500 0.625 1,500 1,750 Sum [m] | 0.875 E 0,250 1,313 1,125 1,500 0,750 0,875 0,750 0,250 1,313 1,125 0,500 0,313 0,438 1,500 0,500 0,313 0,438 0,875 0,750 S 2 0,158 0.346 0,083 0,041 0,030 0,031 7,450 0,158 -0,001 0,004 060'0 -0,002 0.136 0,257 0,014 0,067 0,032 0,036 e [m] 0,128 e [m] 9,300 7,450 9,300 10,600 10,600 10,600 3,750 0,000 5,300 3,750 10,600 0,000 5,300 0000'0 0,000 10,600 0.000 0,000 0,000 E [m] Q 1,155 1,056 0,967 0.410 0,370 1,237 1,084 1,342 0,470 0,246 0,301 0,298 0,843 0,252 0.314 0,720 0,759 0,623 0,667 0.714 H= 100,000 H= 200,000 Wail 11 Wall 10 Wall 11 Wall 10 Wail 8 Val 9 Wall 5 Wall 7 Wall 8 Vall 2 Wall 3 Wali 4 Vall 6 Wall 1 Wall 2 Wall 3 Wali 4 Wall 6 Wall 5 Wall 7 Vail 1 NaB Wall

 N [KN]
 sumV actual
 sum
 sum</th

N [KN] sumV actual sumV target discrepancy in % -1109.33 -5867 | 5866.8 | 0%

Position of the resulting force

z

Proportion Q/H

a [kN]

Mi [kNm]

N [kN] -46,348

0,875

[r [m]

L/2 0,438

e [m] 0,238

[m] 0

a 0,199

L

Wall

Wall 1

H= 300,000

3%

9,92

-11,04

inside the cross section

**

139,70

Sum

-2323,28

Sum

-9,49

-59,705

0,875

0,438

0,159

10,600

0,279

Wall 9

inside the cross section

Page 1/5

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY INSTITUTE OF CONCRETE AND MASONRY STRUCTURES

inside the cross section 22% 10% 24% 4% 2% 1% 4% 44 % 0% 64,75 30,79 70,95 5,82 2,77 11,51 10,74 10,98 0,03 1,60 229,87 -251,49 -52,88 -3,03 -35,72 -1,23 -164,03 -78,41 -13,23 Sum -254,080 -509,197 -63,200 -265,729 -157,500 -134,920 -336,051 -110,010 -333,471 47,161 -2257,67
 1,313
 2,625

 1,125
 2,250

 1,500
 3,000

 0,500
 1,000

 0,513
 0,625

 0,313
 0,625

 0,750
 1,500
 1,750 1,500 1,500 0,875 Sum 0,875 0,750 0,750 1,313 1,125 0,438 0,199 0,227 0,028 0,488 0,281 0,009 0,494 9,300 0,184 0,131 0,000 0,000 5,300 3,750 7,450 10,600 10,600 10.600 0,676 0,523 0,5241 0,824 0,826 0,316 0,285 0,619 1,006 0,157 Wall 10 Wali 11 Wali 6 Wali 5 Wall 8 Wali 4 Wail 7 Val 9 Wail 2 Wall 3

400.000 ů

he resulting force

6 0,607 3,750 0,518 1,128 2,356 2,15,452 -112,10 46,66 12% inside the cross section 7 0,800 7,460 0,520 1,500 -563,755 -343,37 100,25 25% inside the cross section 8 0,128 9,300 0,372 0,500 1,000 -43,256 -16,10 8,53 2% inside the cross section 11 0,273 0,600 0,040 0,313 0,025 -117,006 -462 3,80 1% inside the cross section 12 0,275 10,600 0,040 0,313 0,025 -117,006 -4.62 3,80 1% inside the cross section 10 0,275 10,600 0,040 0,313 0,520 -15,02 -51,93 16,20 3% inside the cross section 10 0,275 10,600 0,417 0,520 -16,82 -36,93 16,22 3% inside the cross section 10 0,775 0,750
5 0,607 3,750 0,518 1,128 2,350 2,15,452 -112,10 46,66 12% inide the cross section 7 0,880 7,450 0,520 1,500 -563,765 -349,37 100,25 25% inide the cross section 8 0,128 9,300 0,372 0,500 1,000 -43,256 -16,10 8,63 2% inide the cross section 1 0,272 0,600 0,312 0,500 1,000 -43,256 -16,10 8,63 2% inide the cross section 11 0,272 0,1600 0,040 0,312 0,505 -11,7006 -41,2 38 1% inide the cross section 12 0,272 10,600 0,040 0,312 0,500 1,500 -61,39 1% inide the cross section 13 0,072 10,600 0,170 0,432 35,30 15,48 1% inide the cross section
5 0.607 3.750 0.518 1,125 2.250 -216,452 -112,10 46,66 12% inside the cross section 7 0.800 7,450 0.620 1,500 3.000 -563,765 -349,37 100,26 25% inside the cross section 8 0,128 9.300 0.312 0,500 1,000 -45.26 -16,10 8.63 2% inside the cross section 11 0,273 10,600 0,040 0,313 0,625 -117,006 -4.62 3.80 1% inside the cross section 10 0,275 10,600 0,040 0,313 0,625 -117,006 -4.62 3.80 1% inside the cross section 10 0,275 10,600 0,040 0,313 0,625 -117,006 -4.62 3.80 1% inside the cross section 10 0,575 10,500 0,505 1.500 -3.50,818 -51,39 1% 1%
5 0.607 3,750 0.518 1,125 2,250 -216,452 -112,10 46,69 12% inside the cross section 7 0,800 7,450 0,620 1,500 3,000 -563,765 -349,37 100,25 25% inside the cross section 8 0,128 9,300 0,500 1,000 -43,256 -16,10 8,63 2% inside the cross section 11 0,273 10,600 0,040 0,313 0,625 -117,006 -4,62 3,80 1% inside the cross section
5 0.607 3,750 0.518 1,125 2.250 -216,452 -112,10 46,66 12% inside the cross section 7 0.800 7,450 0,620 1,500 3.000 -563,765 -349,37 100,25 25% inside the cross section 8 0,128 9,300 0,372 0,500 1,000 -43,256 -15,10 8,53 2% inside the cross section
5 0.607 3,750 0.518 1,125 2.250 2.16,452 -112,10 46,66 12% inside the cross section 7 0.880 7,450 0.620 1,500 -563,755 -349,37 100,25 25% inside the cross section
5 0,607 3,750 0,518 1,125 2,250 -216,452 -112,10 46,69 12% inside the cross section
6 0.523 5.300 0.789 1.313 2.625 -285,689 -225,44 85,93 21% Inside the cross section
4 0.235 0.000 0.015 0.250 0.500 -131,393 -1,96 0.37 0% Inside the cross section
3 0,410 0,000 0,340 0,750 1,500 -149,667 -50,89 15,67 4% Inside the cross section
2 0.593 0,000 0.282 0,875 1,750 -268,390 -75,74 15,54 4% inside the cross section
1 0,002 0,000 0,436 0,438 0,875 -32,856 -14,31 12,17 3% inside the cross section
a D[m] e[m] L/2 L[m] N[AA] M[AAm] G[AA] Proportion CAH N
Position of the resulting for

H= 500,000

Position of the resulting force Proportion Q/H O IKNI M ReMm] NI TUANT

Position of the resulting force									600,000	Ŧ
		406,39	Sum	-2141,41	Ens					
outside the cross section	3%	14,57	-18,33	-20,869	0,875	0,438	0,878	10,600	-0,441	Wali 9
inside the cross section	4%	22,49	-81,94	-366,290	1,500	0,750	0,224	10,600	0,526	Wall 10
inside the cross section	1%	5,31	-6,49	-124,567	0,625	0,313	0,052	10,600	0,260	Wall 11
outside the cross section	2%	11.08	-19,45	-22,191	1,000	0,500	0,877	9,300	-0,377	Wall 8
inside the cross section	27%	137,24	-459,28	-623,095	3,000	1,500	0,737	7,450	0,763	Wałl 7
inside the cross section	13%	62,74	-138,30	-175,903	2,250	1,125	0,786	3,750	0,339	Wall 5
inside the cross section	19%	92,86	-233,16	-248,753	2,625	1,313	0,937	5,300	0,375	Wall 6
inside the cross section	%0	0,78	-2,84	-127,976	0,500	0,250	0,022	0,000	0,228	Wall 4
inside the cross section	4%	20,93	-68,64	-141,995	1,500	0,750	0,483	0,000	0,267	Wall 3
inside the cross section	5%	24,04	-102,61	-269,747	1,750	0,875	0,380	0,000	0,495	Wall 2
pulside the cross section	3%	14,35	-16,90	-20,019	0,875	0,438	0,844	000'0	-0,407	Wall 1
Z	Proportion Q/H	Q [kN]	M [kNm]	N [KN]	[m]	L/2	e [m]	[u] 0	43	Wall

| z | outside the cross section | inside the cross section | outside the cross section | inside the cross section | inside the cross section | DUISIDE INE CLOSS SECTION |
|---|---------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|---------------------------|--------------------------|--------------------------|---------------------------|

-170,49 -3609,39		

-509,12 -922,50 -700,51 -197,45

mV actual	sumV target	discrepancy in %
-5867	5866,8	%0

outside the cross section inside the cross section inside the cross section inside the cross section

Proportion Q/H 2% 6% 4% 0%

Q [KN]

M [kNm]

N (KN)

L [m]

e [J]

[m] Q

Wall 1 Wall 2 Wall 3

Wall

-12,76 -139,58 -85,21 -4,16

-11 117

0,875

0,438

0,875 5

12,74 35,65 26,33 1,46

-271,553 -139,983 -123,338

1,750 1,500 0,500

0,514 0,609 0,034 1,148

0,000 0,000 0,000

0,361 -0.710

0,216

Wall 4

0,250 0,750

Page 2 / 5

report sce-24005005 from 2005-04-21

Annex AH2-mod/H-neg/base

ĺ
Annex AH2-mod/H-neg/base

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY INSTITUTE OF CONCRETE AND MASONRY STRUCTURES

n	000 443,724 -113,71 5 715 -43,739 -5,97 611,7 n -2291,61 Sum 611,7 315 -4,705 -4,705 618	225 -136,851 -18,78 15,1 200 -48,724 -179,71 58,6 275 -43,239 -5,97 5,0 1,1,33 n -2291,61 Sum 611,33 1,1,33 1,1,1,33 1,2,1,33 1,1,33	00 0,733 -1,52 1,73 25 -136,651 -18,78 15,11 00 448,724 -179,71 58,65 07 -6,339 -5,97 58,65 07 -6,339 -5,97 58,65 07 -3,339 -5,97 58,65 07 -2231,61 Sum 611,33 01 N [koli] M [koli] Q [kol]	00 -823,500 -795,83 256,05 00 0,733 -1,52 1,76 225 -135,551 -18,78 15,13 276 -48,724 -179,71 55,60 376 -48,724 -179,71 55,60 376 -4,721 5,40 1 1,03 1	50 -104,450 -97,51 79,87 00 -823,500 -795,83 256,05 00 -823,500 -795,83 256,05 00 -0,733 -1,62 1,76 225 -136,651 -13,73 15,13 15,13 205 -136,651 -179,71 56,05 15,13 216 -3339 -5,97 59,97 59,03 216 -3339 -5,97 5,99 59,03 216 -3339 -5,97 5,99 59,03 217 -179,71 58,04 59,04 21 -2291,61 Sum 611,33 217 N [koli] M [kolin] 2 [kol] 217 -4,17 -4,17 4,83	225 -161,638 -160,57 94,13 97,51 -104,450 -97,51 79,57 90 -0,733 -1,48,28 15,13 225 -138,651 -18,78 15,13 225 -138,651 -18,78 15,13 225 -138,651 -18,78 15,13 226 -4,87,7 5,99 77 -4,705 -4,17 6,60 1 (A) M [Aum] Q [AU] 71 -4,705 -4,17 4,94 71 -4,905 -4,17 4,94 71 -4,705 -4,17 4,94 71 -4,905 -4,17 4,90 71 -4,905 -4,17 -4,90 71 -4,905 -4,17 -4,90 71 -4,905 -4,17 -4,90 71 -4,905 -4,17 -4,90 71 -4,905 -4,17 -4,905 -4,17 -4,90 71 -4,905 -4,17 -4,90 71 -4,905 -4,17 -4,90 71 -4,905 -4,17 -4,905 -4,17 -4,905 -4,17 -4,905 -4,17 -4,905 -4,905 -4,17 -4,905 -4,17 -4,905 -4,905 -4,17 -4,905 -4,17 -4,905 -4,905 -4,17 -4,905 -4,	000 -111,500 -6,34 377 225 -104,450 -97,53 25,500 00 -823,500 -795,53 256,05 00 -0,733 -1,82 1,76 225 -136,651 -18,73 1,76 200 0,733 -1,82 1,76 215 -136,651 -18,78 1,76 216 -136,651 -18,72 1,76 216 -136,651 -18,72 1,76 216 -133,950 -5,97 5,69 217 214,17 Sum 5,69 21 -2291,61 Sum 6,13 21 N [M] M [M] 4,94	00 -175.279 -102.71 36.05 00 -115.629 -80.51 3.77 00 -114.509 -87.51 79.57 00 -823.500 -795.83 256.05 00 -0.733 -1.82 1.79.57 00 0.733 -1.82 1.76 010 0.733 -1.82 1.76 025 -136.651 -137.73 256.05 010 0.733 -5.91 79.85 026 -443.724 -179.71 56.65 01 -443.724 -179.71 56.65 01 N.RM M.M.M.M 5.94 01 N.RM A.17 5.94 01 N.RM A.17 5.44	50 -318,001 -187,01 52,75 00 -175,279 -102,71 56,05 20 -115,629 -02,17 36,05 20 -114,509 -97,51 79,57 20 -104,450 -97,51 79,57 20 -235,500 -795,53 256,05 20 -136,651 -137,73 266,05 20 -136,651 -137,73 266,05 20 -443,724 -179,71 56,05 21 -533 -5,92 5,06 21 -3339 -5,92 5,06 21 -182 -179,71 56,05 21 -133,73 -1,173 15,13 21 -2291,61 Sum 6,11,33 21 N [Mum] M [Mum] 2,14,73
Sum -2291,61 Sum	0 1,500 443,724 -119,71 8 0,876 -4,339 -5,97 Sum -2281,61 Sum	3 0,625 -136,651 -18,78 00 1,500 -448,724 -179,71 8 0,876 -8,339 -5,97 Sum -2291,61 Sum	0 1,000 0,733 -1,52 3 0,625 -136,651 -18,78 0 1,500 -448,724 -179,71 8 0,876 -6,339 -5,97 8 0,876 -5,339 -5,97 8 0,876 -2281,61 Sum	0 3.000 -823,500 -795,83 0 1.000 0,733 -1,62 3 0,650 -136,661 -1,62 1 -136,661 -136,17 18,173 0 1,500 -438,724 -179,17 1 -1,500 -8,339 -5,97 1 -2,291,61 Sum -5,97	5 2.250 -104,450 -97,51 0 3,000 -823,500 -796,83 0 1,000 -0,733 -1,82 0 0,625 -136,651 -18,76 1 0,610 -443,724 -179,71 1 0,615 -4,333 -5,57 8 0,875 -3,333 -5,57 8 0,876 -3,334 -5,57	3 2,625 -161,638 -160,57 5 2,250 -104,450 -97,51 0 3,000 -823,650 -795,63 1,000 -0,733 -1,8,73 3 0,625 -136,651 -18,78 0 1,500 -448,724 -179,71 8 0,876 -3,339 -5,97 Sum -2281,61 Sum	0 0,500 -111,509 -8,34 3 2,625 -161,638 -160,57 5 2,250 -104,450 -795,58 0 1,000 -823,500 -795,58 0 1,000 -0,733 -1,62 3 0,625 -136,651 -18,73 0 1,500 -448,724 -179,71 8 0,876 -8,339 -5,97 8 0,876 -8,339 -5,97 8 0,876 -3,339 -5,97 9 0,876 -3,339 -5,97	0 1,500 -175,279 -102,71 0 0,500 -114,509 -8,34 3 2,625 -104,450 -875,50 5 2,250 -104,450 -755,83 0 1,000 -0,733 -1,62 0 1,000 -0,733 -1,62 0 1,000 -448,724 -1,79,71 0 1,500 -48,724 -1,79,71 8 0,875 -3,339 -5,97 8 0,876 -3,339 -5,97 8 0,875 -179,71 Sum	5 1,750 -318,001 -187,91 0 1,500 -175,279 -102,71 0 0,550 -111,569 -8,34 3 2,525 -1104,450 -97,51 5 2,250 -104,450 -97,53 0 1,000 0,733 -1,62 1 1,000 0,733 -1,62 1 1,000 0,733 -1,62 1 1,000 0,733 -1,62 1 1,000 0,733 -1,62 1 1,560 -48,724 -16,71 1 1,560 -48,724 -179,71 1 2,005 -3,399 -5,97 1 2,016 -3,391 -5,97 2,017 -2291,61 Sum -5,97
SumSum	0,750 1,500 -448,724 -179,71 0,438 0,876 -8,339 -5,97 c.im -2294.61 Stim	0,313 0,625 -136,651 -18,78 0,750 1,500 -448,724 -179,71 0,438 0,875 -8,339 -5,97 5,00 20161 5,000	0.500 1.000 0.733 -1.82 0.313 0.625 -135.651 -18.78 0.750 1.500 -448.724 -179.71 0.438 0.676 -6.539 0.438 0.5.97 0.438 0.5.97	1,500 3,000 #23,500 -735,83 0,500 1,000 0,733 -1,62 0,313 0,225 -136,651 -1,81,78 0,750 1,500 -448,724 -179,71 0,438 0,334 0,334 -5,97 0,438 0,456 -4,333 -5,97 0,438 0,456 -4,334 -5,97 0,438 0,456 -4,333 -5,97	1,125 2,250 -104,450 -97,51 1,500 3,000 #23,500 -705,83 0,500 1,000 0,733 -1,62 0,319 0,525 -135,661 -1,62,13 0,750 1,500 -48,734 -179,71 0,438 0,1500 -48,724 -179,77 0,438 0,1500 -48,724 -179,77 0,438 0,1500 -2,334 -5,97 0,438 0,1500 -48,734 -179,77	1,313 2,825 -161,638 -160,57 1,155 2,220 -104,450 -97,51 1,500 3,000 -823,500 -795,63 0,500 1,000 0,733 -1,62 0,313 0,655 -136,651 -162,73 0,750 1,500 -48,724 -18,78 0,750 1,500 -48,724 -17,97 0,438 0,555 -3,336 -5,97 0,428 0,555 -3,339 -5,97 0,438 0,556 -3,339 -5,97 0,438 0,456 -3,339 -5,97	0,2500 0,500 -111,509 -3.34 (1,313 2,225 -161,538 -160,57 (1,125 2,2250 -104,450 -775,58 (1,500 3,000 -0.733 -1,52 0,513 0,525 -136,551 -18,78 0,750 1,500 -448,724 -179,71 0,438 0,625 -4,539 -5,97 0,438 0,625 -4,539 -5,97 0,438 0,433 0,539 -5,97 0,597 0,597 -5,97 -5,97	0,750 1,500 -175,279 -102,71 (2.250 0,500 -115,59 -16,75,34 (1.125 2,250 -104,450 -97,51 (1.50 3,000 -823,500 -795,63 0,500 1,000 0,733 -1,62 0,313 0,625 -136,551 -18,76 0,750 1,500 -44,374 -118,71 0,750 1,500 -44,374 -178,71 0,750 1,500 -44,374 -1,51 0,750 1,500 -44,374 -1,51 0,750 1,510 -44,374 -1,51 0,750 1,510 -44,374 -1,51 0,750 1,510 -44,374 -1,510 0,750 1,510 -44,374 -1,510 -1,517 0,750 1,510 -44,374 -1,510 -1,510 -1,517 0,750 1,510 -44,374 -1,510 -1,510 -1,517 0,750 1,510 -1,5	0.875 1,750 -316,001 -187,91 0,750 1,500 -175,279 -102,71 0,250 0,500 -116,529 -8,34 1,313 2,5251 -161,639 -8,34 1,150 3,000 -82,350 -97,51 1,500 3,000 -82,350 -795,63 0,500 1,000 0,735 -162,63 0,500 1,000 0,735 -162,63 0,500 1,000 0,735 -162,63 0,501 1,000 0,735 -18,75 0,731 0,625 -136,651 -18,76 0,730 1,500 448,724 -178,71 0,430 0,625 -43,724 -178,71 0,430 0,461 5,97 -5,97
0.4381 0.8751 -8.3391 -5.971	0,750 1,500 -448,724 -179,71	0,313 0,625 -136,651 -18,78 0,750 1,500 -448,724 -179,71	0,500 1,000 0,733 -1,82 0,313 0,825 -136,651 -18,78 0,750 1,500 -448,724 -179,71	1,500 3,000 -823,500 -735,83 0,500 1,000 0,733 -1,82 0,313 0,625 -136,651 -18,78 0,750 1,500 -448,24 -17,73	1,125 2,250 -104,450 -97,51 1,500 3,000 -823,500 -795,83 0,500 1,000 0,733 -1,82 0,513 0,625 -136,651 -18,78 0,750 1,500 448,24 -17,79 0,750 1,500 448,24 -17,77	1,313 2,825 -161,638 -160,57 1,125 2,250 -104,450 -97,51 1,500 3,000 -823,500 -795,53 0,500 1,000 0,733 -1,82 0,313 0,625 -133,651 -13,76 0,750 1,500 -443,72 -1,82 0,750 1,500 -443,72 -1,87	0.2550 0.500 -111,509 -5.34 1,1313 2,625 -161,638 -160,57 1,125 2,250 -104,650 -97,51 0,500 9,00 823,500 -795,63 0,500 1,000 0,733 -1,62 0,313 0,625 -136,651 -18,78 0,750 1,500 448,724 -178,71	0,750 1,500 -175,279 -102,71 0,220 0,500 -111,509 -8,34 1,315 2,525 -161,636 -87,51 1,315 2,500 -164,450 -77,51 1,500 3,000 -823,500 -795,83 0,500 1,000 0,733 -1,82 0,313 0,622 -136,651 -18,78 0,750 1,500 -443,724 -179,71	0.875 1,750 -318,001 -187,91 0.750 1,500 -175,279 -102,77 0.250 0,500 -114,569 -8,34 1,315 2,625 -161,638 -180,57 1,315 2,625 -164,450 -77,51 1,500 3000 -823,500 -795,63 0,500 1,000 0,733 -1,82 0,313 0,622 -136,651 -18,78 0,513 1,500 443,724 -179,71 0,750 1,500 -443,724 -179,71

Page 3 / 5

TECHNI	CAL UNIN TMENT O	VERSITY F CIVIL E	MUNICE	H ERING AI	ND GEO	DESY				Annex AH2-mod/H-neg/bas	Û			report sce-	24005005 from 2005-04-2
INSTITU	ITE OF C	ONCRET	E AND N	MASONE	λ STRL	JCTURES									
Wall 8	0.381	9,300	0.119	0,500	1,000	3,091	0,37	1,72	%0	inside the cross section	Wall collapsed				
Wall 11	0,117	10,600	0,195	0,313	0,625	-121,031	-23,63	21,09	2%	inside the cross section					
Wall 10	0,322	10,600	0,428	0'750	1,500	496,548	-212,57	71,24	8%	inside the cross section					
Wall 9	-0,383	10,600	0,820	0,438	0,875	-6,769	-5,55	4,60	1%	outside the cross section					
					 Sun	-2378,27	 mns	672,76							
분	1000,000								Ľ	anitina faras					
10001	ſ	[m] (e [m]	61	[Tm]	N RAN	M [kNm]	o tkni	roportion Q/H	N N		N [KN]	sumV actual	sumV target	discrepancy in %
Wall 1	-0.178	0.000	0.515	0,438	0.875	-3,511	-2, 16	2,42	%0	outside the cross section		-1349,56	-6096	5866,8	4%
GDV7			0.627	0.875	1 760	411633	-258.18	78.35	8%	inside the cross section		-450,29			
Wall 2	0.153	0000	0,597	0,750	1,500	-209,197	-124,87	51,92	5%	inside the cross section		-1209,54			
Wall 4	0,096	0,000	0,154	0,250	0,500	-94,450	-14,55	7,36	1%	inside the cross section		-635,69			
Wall 6	0,156	5,300	1,157	1,313	2,625	-115,200	-133,23	86,37	6%	inside the cross section		9,69 			
Wall 5	0,180	3,750	0,945	1,125	2,250	-82,003	11,48	82,30	9.10	inside the cross section		2657 18			
Wall 7	0,396	7,450	1,104	1,500	3,000	-878,415	-969,68	301,13	30%	inside the cross section	Wall collansed	A151000			
Wall 8	0,017	9,300	0,483	0,500	1,000	3,108	1,50	4,10	%n						
Wall 11	0,057	10,600	0,256	0,313	0,625	-78,241	-20,03	11,56	1%	inside the cross section					
Wall 10	0,297	10,600	0,453	0,750	1,500	-563,751	-255,38	86,39	%A	Inside the cross section					
Wall 9	-0,030	10,600	0,468	0,438	0,875	-5,794	-2,71	2,42	0%	ouside life closs secont					
					Sum	-2439,09	Eng	714,37		_					
ب ۲	1100 CDD														
-		22		5	[w]	NI INANG	M RAImT	O IKNI	Froportion Q/H	osition of the resulting force N		N [KN]	sumV actual	sumV target	discrepancy in %
Afail 4	-0 £70	0000	0.607	0.438	0.875	-0.497	-0.30	2.87	%0	outside the cross section		-1418,07	-6240	5866,8	6%
Wall 2	0.237	0.000	0,638	0.875	1,750	-454,501	~290,02	92,85	8%	inside the cross section		-421,22			
Wall 3	0,140	000'0	0,610	0,750	1,500	-219,350	-133,74	57,32	5%	inside the cross section		-1220,12			
Wall 4	0,075	000'0	0,175	0,250	0,500	-88,657	-15,54	8,54	1%	inside the cross section		-616,98			
Wall 6	0,153	5,300	1,160	1,313	2,625	-105,306	-122,13	85,76	8%	inside the cross section		0,41			
Wall 5	0,187	3,750	0,938	1,125	2,250	-77,761	-72,91	81,51	7%	inside the cross section		-3,23			
Wall 7	0,367	7,450	1,133	1,500	3,000	-926,631	-1049,87	326,37	30%	inside the cross section	become the states	-30/3,21			
Wall 8	-0,129	9,300	0,629	0,500	1,000	1,567	66'0	4,89	%0	outside the cross section	wall collapsed				
Wall 11	0,054	10,600	0,259	0,313	0,625	66,979	-17,33	9,49 102 38	1%	inside the cross section					
DI IIEAA	020	10 600	0.462	0.438	0.875	-2.646	-122	3,00	%0	outside the cross section					
					Sum	-2560,96	Sum	774,97							
<u></u> *	1200.000														
	-									Dosition of the resulting force		AI TIGNIS	entra Varial	sum\/ tarnet	discrenancy in %
Wall	a	[w] o	e [m]	1.12	[[[]	INXIN	M [kNm]	Q [KN]	Proportion with	N notice the state content	Mulling Hold	1502 231	Sunty actual	5856.8	9%6
Wall 1	0,121	0,000	0,316	0,438	0,875	3,632	1,15	4,13	%0	Inside me cross sector	wall collapseu	-1302,02	2222	1 2/2222	
Wall 2	0,227	0,000	0,648	0,875	1,750	-503,759	-326,64	108,35	9%	inside the cross section		1 1 C 2 C 1			
Wall 3	0,127	0,000	0,623	0,750	1,500	-227,844	-141,97	61,62	5%	inside the cross section		-12021			
Wall 4	0,062	0,000	0,188	0,250	0,500	-82,282	-15,44	80'6	1%	inside the cross section					
Wall 6	0,155	5,300	1,157	1,313	2,625	-93,669	-108,40	63,72 60.30	70%	inside the cross section		7.73			
Wall 5	0,191	3,/5/	1 1 160	1,120	000 6	-13,301	-1124 35	351 18	29%	inside the cross section		-3717,11			
Wall 8	02.02	9.300	0.202	0.500	1000	-0.541	0,11	6,00	1%	inside the cross section					
Wall 11	0,044	10,600	1 0,268	0,313	0.625	-53,621	-14,39	9,30	1%	inside the cross section					
Wall 10	0,266	10,600	0,482	0,750	1,500	-683,299	-329,14	120,50	10%	inside the cross section					

TECHNI DEPAR1 INSTITU	CAL UNIVE MENT OF (TE OF CON	RSITY M CIVIL EN JCRETE	UNICH GINEER AND MA	KING AN KSONRY	ID GEO 1 STRU	DESY CTURES				Annex AH2-mod/H-neg/b	ase			report sce	24005005 from 2005-0
Wall 9	0.158	10,600	0,279	0,438	0,875	2,674	0,75	4,20	%0	inside the cross section	Wall collapsed				
			-		Sum	-2681,23	sum	840,36							
<u></u>	1300,000									Position of the resulting force					
Wall	ы Ф	ə [ɯ] e	[u]	L72 L	Ē.	โหหไ	M [kNm]	Q [kN]	Proportion Q/H	z	:	N [KN]	sumV actual	sumV target	discrepancy in %
Wall 1	0,023	0,000	0,414	0,438	0,875	4,092	1,70	5,21	%0	inside the cross section	Wall collapsed	-1594,16	-6585	2800,0	07.71
Wall 2	0,214	0,000	0,661	0,875	1,750	-552,790	-365,17	122,93	%6	inside the cross section		-364,93			
Wall 3	0,126	0,000	0,624	0,750	1,500	-234,926	-146,62	66,09	5%	inside the cross section		-1254,78			
Wall 4	0,051	0,000	0,199	0,250	0,500	-74,919	-14,88	7,96	1%	inside the cross section		-5/4,31			
Wall 6	0,172	5,300	1,141	1,313	2,625	-84,865	-96,82	85,69	7%	inside the cross section		5.0.7			
Wall 5	0,208	3,750	0,917	1,125	2,250	-71,486	-65,54	85,83	7%	inside the cross section		6,39			
Wall 7	0,317	7,450	1,184	1,500	3,000	-1003,535	-1187,68	375,65	29%	inside the cross section		-3/81,80			
Wall 8	0,270	9,300	0,230	0,500	1,000	-1,525	-0,35	5,71	%0	inside the cross section					
Wall 11	0,019	10,600	0,294	0,313	0,625	-42,670	-12,53	8,75	1%	inside the cross section					
Wall 10	0.257	10,600	0,493	0,750	1,500	-744,423	-367,15	137,17	11%	inside the cross section	:				
Wall 9	0,001	10,600	0,437	0,438	0,875	3,511	1,53	5,68	0%	inside the cross section	Wall collapsed				
					Sum	-2803,54	Sum	906,66							

Page 5 / 5

report sce-24005005 fram 2005-04-21				actual sumV target discrepancy in %	367 5866.8 0%											actual sumV target discrepancy in %	867 5866,8 0%												/ actual sumV target discrepancy in %	9/3 5066,8 Z76	
·		transverse walls	~	N [KN]	-967 56 -58	-509,50	-720,73	-391,20	-209,36	-3404,65						N [KN] sumV		-502,84	-666,34	-582,44	-435,19	-221,70	-3347,49						N [KN] sumV	-904,47 -5	•
Annex AH2-mod/H-pos/middle				acitive of the resulting force M	inside the cross section inside the cross section	inside the cross section inside the cross section	inside the cross section			osition of the resulting force N	inside the cross section	Inside the cross section inside the cross section	inside the cross section			osition of the resulting force N	inside the cross section Inside the cross section	-													
				- HO anthound		-12%	-5%	-19%	~58%	-50%	-4%	%?	2%			Proportion Q/H F	%0	%6-	-5%	-1%	-20%	-23%	-40%	4%	-2%	×1-			Proportion Q/H	% } -	
						-12,36	-5,17	-1,34 -18,69	-28,55	49,84	4,29	-3,37 -8.43	2,05	-127,65		Q [KN]	0.27	-18,42	-9,38	-1,70	40,21	-45,64	-80,75	-7,25	4,74	-13,3/	-221,71		a [kN]	-26.05	
					M [KNm]	-22,28	-16,64	-0,18	-31,87	-92,33	4,05	-0,23	-6,16	Sum		M [kNm]	-8.08	-38,18	-26,88	-0,52	-143,44	-55,56	-165,38	-6,76	-1,01	-20,24	Sum		M [kNm]	-13,06 -76.62	
DESY CTURES	itive		rce H rce H rce H rce H		N [KN]	-241,910	-175,357	-148,603 -534,474	-388,713	-312,239	-132,371	-83,336 -254.728	-97,240	-2462,19		N KNI	104.948	-239.082	-183,136	-152,281	-583,082	-417,082	-264,264	-148,949	-78,158	-238,743	-2519,32		N [KN]	-130,591 -231,756	
ND GEOI	; H pos	ŵ	horizontal fo horizontal fo horizontal fo horizontal fo		L [m]	1,750	1,500	0,500 2.625	2,250	3,000	1,000	0,625	0.875			Llmi	0.875	1.750	1,500	0,500	2,625	2,250	3,000	1,000	0,625	1,500	E uns		ר (ש) ר	0,875	
H ERING AI MASONR	odified	Shear-Walk	ction of the ction of the ction of the ction of the	:		0,675	0,750	0,250	1,125	1,500	0,500	0,313	0.438			1.12	0.438	0.875	0.750	0,250	1,313	1,125	1,500	0,500	0,313	0,750	0,430		5	0,438 0.875	
Y MUNIC ENGINE ITE AND I	se 2-m		sion d to the dire d to the dire d to the dire d to the dire d to the dire		e B	0,065	0,095	0,001	0,082	0,296	0,031	0,003	0.063			e Imi	1 0 077	0 160	0.147	0,003	0,246	0,133	0,626	0,045	0.013	0 0,110	o)n'n		[m] a [0,100	2005
VIVERSIT OF CIVIL CONCRE	Hou		ve Tension ve Compres ve compare ve compare ve compare ve compare	g		000'0	0,000	0,000	3,750	7,450	9,300	5 10,600	10.600	5	g	, D Taul	0000	0000	0.000	3 0,000	3 5,300	3 3,750	5 7,450	5 9,300	5 10,60	10,60	na'nı	00	[w] D	0000	1
NICAL UN RTMENT TUTE OF			N positi N'negati Q'positi Q'positi e'positi	90'00 %		196 197 197	359,07	4 -0,251	5 1,207	71,796	3 - 20,531	11 0,315 0 40 805	2 1 2 2 0 1		200,00	a.	1961	× 103	168.0	4 30,255	6 1,55%	5 1,25	7 22,125	8 70,54	11 .0,32	10 80		300,01	65 :	1 0,53	7
TECH DEPA INSTI					Wall	Wall Wall 2	Wall	Wall -	Walls	Wall	Wali	Wall	Mall			Walt	Internation	INAM	Mail	Mal	- Wall	- Wall	Wall	Wall	Walt	IPA	Avail		Wall	Wall	NDA A

Page 1/4

Annex AH2-mod/H-pos/middle

(____)

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY INSTITUTE OF CONCRETE AND MASONRY STRUCTURES

inside the cross section inside the cross section inside the cross section finside the cross section inside the cross section -30% -4% -2% -1% -23% -5% ~**1%** -11,18 -6,81 -20,65 -3,55 -91,45 -314,12 -14,61 -58,12 -2,12 -67,27 -271,02 -113,08 -176,36 -13,61 -13,61 -2,98 -55,92 -14,61 Sum -51,84 -1,34
 0,750
 1,500
 -193,366

 1
 0,250
 0,500
 -161,517

 1
 1,313
 2,825
 -998,679

 1
 1,313
 2,825
 -998,679

 1
 1,125
 2,220
 -488,065

 3
 1,500
 3,000
 -215,661

 3
 0,500
 1,000
 -217,269

 6
 0,500
 1,000
 -57,386

 8
 0,370
 1,000
 -517,006

 4
 0,478
 0,875
 -141,165

 Sum
 271,300
 -271,300
 -271,300
 0,260 0,008 0,388 0,383 0,815 0,052 0,073 0,278 0,104 0,000 0,000 5,300 3,750 7,450 9,300 10,600 10,600 10,600 1,010 0,258 1,700 1,357 2,315 0,573 1,028 0,541 Wall 8 Wali 10 Wali 9 Wall 3 Wall 4 Wall 6 Wall 5 Wali 7

400,000

	0,875 -130,591 -13,06 -5,00 -1% inside the cross section	1,750 -231,756 -76,62 -34,02 -9% Inside the cross section	1,500 -199,366 -51,84 -20,10 -5% inside the cross section	0,500 -161,517 -1,34 -2,57 -1% inside the cross section	2,625 -698,679 -271,02 -97,04 -24% inside the cross section	2,250 -488,065 -113,08 -89,98 -22% inside the cross section	3,000 -216,501 -176,36 -98,21 -25% inside the cross section	1,000 -187,269 -13,61 -15,22 -4% inside the cross section	0,625 -57,388 -2,98 -9,03 -2% inside the cross section	1.500 -201,006 -55,92 -27,99 -7% inside the cross section	0,875 -141,165 -14,61 -6,93 -2% inside the cross section	Sum -2713,30 Sum -406,10	
[m] L [m]	0,875	1,750	1,500	0,500	2,625	2,250	3,000	1,000	0,625	1,500	0,875	Sum	•
L12	0,438	0,875	0,750	0,250	1,313	1,125	1,500	0,500	0,313	0,750	0,438		
e [m]	0,100	0,331	0,260	0,008	0,388	0,232	0,815	0,073	0 0,052	0 0,278	0 0,104		
[w] 0	000'0	0,000	0,000	0,000	5,300	3,750	7,450	9,300	10,60(10,601	10,60		
8	0,538	1,206	1,010	0,258	1.700	1,357	2,315	0,573	0.365	1,028	0,541		
Wall	Wail 1	Wall 2	Wall 3	Wall 4	Wall 6	Wall 5	Wall 7	Wall 8	Wall 11	Wall 10	Wall 9		

600,000

of the resulting force N	e the cross section												
Position	insíd	insid											
Propartion Q/H	-2%	-7%	-5%	-1%	-2.7%	-24%	-19%	-4%	-2%	-5%	-3%		
Q [kN]	-11,60	-40,38	-30,39	-3,64	-162,41	-145,42	-112,85	-24,87	-11,06	-29,65	-15,33	-587,61	
M [kNm]	-18,85	-101,31	-76,47	-2,30	-411,66	-177,89	-163,75	-21,56	-3,64	-67,42	-21,67	Sum	
N [kn]	-157,472	-236,825	-218,421	-171,356	-826,620	-562,943	-214,354	-227,934	-37,965	-179,113	-176,188	-3009,19	
[m] T	0,875	1,750	1,500	0,500	2,625	2,250	3,000	1,000	0,625	1,500	0,875	Sum C	
1,12	0,438	0,875	0,750	0,250	1,313	1,125	1,500	0,500	0,313	0,750	0,438		
e [m]	0,120	0,428	0,350	0,013	0,498	0,316	0,764	0,095	0,096	0,376	0,123		
[m] Q	0,000	0.000	0,000	0'000	5,300	3,750	7,450	9,300	10,600	10,600	10,600		
63	0,557	1.303	1,100	0,263	1.811	1,441	2,264	0,595	0,408	1.126	0,561		
Walf	Wall 1	Wall 2	Wall 3	Wall 4	Wall 6	Wall 5	Wall 7	Wati 8	Wall 11	Wall 10	Wall 9	1	

700,000

Position of the resulting force N	inside the cross section						
Proportion C/H	-2%	-7%	-5%	-1%	-27%	-25%	
a [kN]	-15,61	-45,96	-32,51	-4,29	-189,26	-176,31	
M [kNm]	-22,04	-114,66	-84,45	-2,83	-470,53	-207,69	
N [kN]	-172,594	-240,332	-233,878	-176,764	-889,641	-601,654	
۲ [m]	0,875	1,750	1,500	0'200	2,625	2,250	
12	0,438	0,875	0,750	0,250	1,313	1,125	
e [m]	0,128	0,477	0,361	0,016	0,529	0,345	
[m] Q	0,000	0,000	0,000	0'000	5,300	3,750	
ą	0,565	1,352	1.111	0,266	1,841	1,470	Contraction of the local division of the loc
Wall	Wall 1	Wall 2	Wall 3	Wali 4	Wall 6	Wall 5	

-604,36	-551,28	-468,68	-234,15	-3259,23

discrepancy in %	0%						
sumV target	5866,8						
sumV actual	-5867						
N [kn]	-868,36	-488,68	-540,37	-517,51	-492,58	-245,98	-3153.48

Page 2/4

	report sce-24005005 from 2005-04-21		actual sumV target discrepancy in % 568 5.8 0% 0%	actual sumV target discrepancy in % 865 5866,8 0% 0	actual sumV target discrepancy in % 873 5866.8 0%
í)		-2691,35	N [KN] sumV -685,71 -56 -419,08 -242,34 -242,34 -359,52 -514,50 -283,87 -2605,01	N [KN] sumV -625,79 -56 -625,79 -56 -173,69 -173,65 -231,65 -2328,66	N [KN] sumV -562.80 -55 -370,88 -115,45 -304,16 -260,62 -298,53 -2152,45
	ai/H-pos/middle	section section section section	img force N section section section section section section section section	ting force N section section section section section section section	ting force N Wall im Arsch section section section section section section section section
	Annex AH2-mo	inside the cross inside the cross inside the cross inside the cross inside the cross	an QIH Position of the result inside the cross inside the cross	on QH Position of the resulting the cross inside the cross ins cross ins the crose the cros the cross ins the cross inside the cr	an QH Position of the results inside the cross inside the
		833 -179 32 -179 39 -2% 50 -5% 59 -3%	NJ Proportic 14 - 3% 54 - 5% 55 - 5% 88 - 5% 83 - 269 83 - 269 83 - 269 84 - 109 22 - 5% 22 - 5% 23 - 1% 24 - 109 22 - 5% 23 - 5% 24 - 100 25 - 5% 26 - 5% 27 - 5% 28 - 5% 29 - 5% 29 - 5% 20	05 Propertic 88 - 399 5590 22890 3815 3915 5915 5915 5915 5915 5915 5915 5915 5915 5915 5915 5915 501	MJ Proporti 31 Proporti 21 -33 22 -37 23 -33 24 -37 25 -39 26 -37 25 -39 26 -37 25 -39 26 -36 25 -34 26 -36 27 -36 28 -36 29 -39 29 -44 20 -49
() 		5,91121 5,9530,5 5,1110,6 1,3831,5 5,5320,1 1,3831,6 1,3831,6 1,3831,6 1,3831,6 1,3831,6 1,3831,6 1,3831,6 1,3830,6 5,5330,55 5,5330,55 5,5330,55 5,5330,55 5,5330,55 5,5330,55 5,5330,55 5,5330,55 5,5330,55 5,5330,55 5,5330,55 5,55 5,55 5,55 5,55 5,55 5,55 5,55	Alimity Q. [k 5.89 -2.1, 1 5.89 -2.1, 1 5.68 -2.1, 1 5.68 -3.7, 1 5.68 -3.7, 1 5.68 -3.7, 1 5.68 -3.7, 1 5.68 -3.7, 1 5.68 -3.7, 1 19.34 -19.1 19.34 -19.2 11.1 -38.4 4.81 -34.4 4.81 -34.4 0.08 -2.8	kum -782 (kNm) Q.[k 0.10 -27, 34,05 -27, 34,05 -27, 34,05 -216 34,05 -216 34,05 -216 34,24 -42, 15,5 -1131 (5,8 -216 4,6 -23, 14,88 -33, 14,88 -33, 14,18 -33, 14,18 -33, 14,18 -33, 14,18 -33, 14,18 -34,	All
	ESY TURES	208,206 -1 248,564 -2 33,846 - 169,509 -7 195,629 -2 3170,62 s	N (KN) M (190,476 2 248,302 -11 248,302 -11 248,302 -11 182,4385 643,9832 247,805 -1 217,805 -1 26,914 -2 26,914 -2 27,914 -2 26,914 -2 2	2365,07 S365,07 S365,07 S365,07 S365,07 S365,07 S365,07 S45	N [HAI] M 234,388
	D GEODI	3,000 - 1,000 - 1,000 - 2,500	L [m] 0.875 0.875 1.1550 1.1550 1.1550 2.8555 2.8555 2.8555 1.000 1.000 0.875 1.1500 1.000 0.875 1.15000 1.1500 1.1500 1.15000 1.15000 1.15000 1.15000 1.15000 1.15000	sum	L [m] 0.875 1,750 1,750 1,500 1,500 1,500 0,525 1,000
	RING AN ASONRY	1,500 0,500 0,750 0,438	L12 0,438 0,438 0,436 0,438 1,500 1,513 1,313 1,1,150 0,510 0,513 0,313 0,438	L/2 0,438 0,438 0,438 0,438 1,135 1,135 0,1560 0,1560 0,313 0,313 0,313 0,313 0,313 0,313	L/2 0,438 0,438 0,875 0,505 1,135 0,256 1,135 0,256 0,256 0,256 0,256 0,256 0,256 0,256 0,500 0,500 0,500
	MUNICH INGINEE E AND M	0,845 0,104 0,092 0,421 0,131	e [m] e [m] 0,136 0,500 0,385 0,385 0,385 0,733 0,733 0,733 0,114 0,102 0,462 0,138	e [m] 0,142 0,142 0,525 0,590 0,590 0,596 0,586 0,586 0,586 0,586 0,586 0,586 0,124 0,124	e [m] 0,147 0,558 0,558 0,505 0,505 0,505 0,505 0,505 0,132 0,132 0,132 0,132 0,132
	VERSITY F CIVIL E ONCRET	7,450 9,300 10,600 10,600 10,600	D [m] D (000 0,000 0	D [m] 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 0,000 1,450 0,300 1,450 1,450 1,0,600 1,0,600	D [m] 0,000 0,000 0,000 0,000 1,7450 7,450 7,450 10,600 10,600
	CAL UNP TMENT O TTE OF C	2,345 0,604 0,404 1,171 0,569	800,000 a 0,302 1,375 1,135 0,375 1,135 0,375 0,516 0,516 0,516 0,576	900,000 a 0.580 1,400 1,400 1,400 1,400 0,582 0,582 0,582 0,582 0,582 0,582	1000,000 0,564 1,453 1,458 1,458 1,458 2,323 0,632 0,632 0,568 1,264
	TECHNI DEPARI INSTITU	Wall 7 Wall 8 Wall 11 Wall 10 Wall 9	Wall 1 Wall 1 Wall 2 Wall 3 Wall 6 Wall 5 Wall 11 Wall 11 Wall 11 Wall 10	Wall Wall 1 Wall 1 Wall 2 Wall 5 Wall 7 Wall 7 Wall 1 Wall 10 Wall 11 Wall 11	Walf 1 Walf 1 Walf 2 Walf 6 Walf 6 Walf 5 Walf 1 Walf 1 Walf 1

Page 3/4

DEPAR	TMENT C		ENGINE:	H ERING A	ND GEO	DESY				Annex AH2-mod/H-pos/mic	ddie	report sce-24005005 from 2005-04-2
III SN				NICOCKIN								
Wall 9	0,587	10,600	0,149	0,438	0,875	-266,155	-39,76	40,90	4%	inside the cross section		
					uns	-3720,83	mns	-930,21				
	1100,000											
Wall	-	[m] D	e [m]	77	[[m]	I II II N	M [kNm]	a [kN]	Proportion Q/H	Position of the resulting force N	N [KN] sumV actual sumV	<u>N target discrepancy in % 300 300 300 300 300 300 300 300 300 3</u>
Wali 1	0,588	0.000	0,150	0.438	0,875	-260,491	-39,13	-42,44	4%	inside the cross section	-490,32 -5874 58	866,8 U%
Wall 2	1,442	000'0	0,567	0.875	1,750	-262,185	-148,58	-70,67	-6%	inside the cross section	-343,45	
Wall 3	1,168	000'0	0,418	0,750	1,500	-299,861	-125,19	-53,49	-5%	inside the cross section		
Wall 4	0,280	000'0	0,030	0,250	0,500	-202,280	-6,09	-8,79	-1%	inside the cross section	2/3/2-	
Wall 6	1,938	5,300	0,625	1,313	2,625	-1108,675	-693,37	-271,02	-25%	inside the cross section	-4X1,04	
Wall 5	1,468	3,750	0,343	1,125	2,250	-725,649	-249,04	-252,58	-23%	inside the cross section	10°50E-	
Wall 7	2,296	7,450	0,796	1,500	3,000	-237,161	-188,66	-150,75	-14%	inside the cross section	-1961-	
Wall 8	0,638	9,300	0,138	0,500	1,000	-358,738	-49,47	-67,83	-6%	inside the cross section		
Wall 11	0,282	10,600	-0,030	0,313	0,625	-14,243	0,43	-11,12	-1%	inside the cross section		
Wall 10	1,284	10,600	0,534	0,750	1,500	-149,474	-79,85	-41,06	4%	inside the cross section		
Wall 9	0,591	10,600	0,153	0,438	0,875	-293,646	44,93	47,59	4%	inside the cross section		
			· ·		mis	-3912,40	Sum	-1017,33				
	1200,000											
										Bookies of the resulting force N	N KNÌ SUM' actual SUM	V target discrepancy in %
Wall	8 0 500	[m] (e [m]	L/2	L [m]	N [KN] -285 500	M [KNm] 43.42	u [kv]	4%	inside the cross section	-419,30 -5875 55	i866,8 0%
ITEAA	0°220	ono'o	101 107	10	212/2				201	inside the evert parties	-316.23	
Wall 2	1,459	000'0	0,584	0,875	1,750	-264,066	-154,24	-75,11	-0% 70%	inside the cross section	-11.84	
Wali 3	1,183	0'000	0,433	0,750	1,500	-316,261	-130,94	20'00-	-0.2	inside the cross section	-256.64	
Wall 4	0,284	000'0	0,034	0,250	005'0	-209,429	-1,12	12,012	144	include the cross sanfing	-463 71	
Wall 6	1,955	5,300	0,642	1,313	2,625	-1151,499	-745,03 -262,60	-280,43	-23%	inside the cross section	-308,06	
Viali 5	1,4/5	2''(2N	ics'n	C71 (1	7,230	-141,622	00,007-		1202	incide the rrace section	-1775.78	
Wall 7	2,293	7,450	662'0	1,500	3,000	-243,210	-192,82	-161,18	976.1-			
Wall 8	0,642	9,300	0,142	0.500	1,000	-390,382	-55,43	-77,14	-6%	inside the cross section		
Wall 11	0,186	10,600	-0,127	0,313	0,625	~13,166	1,67	-11,97	-1%	inside the cross section		
Wall 10	1,285	10,600	0,535	0,750	1,500	-148,123	-79,22	-46,84	-4%	Inside the cross sector		
Wali 9	0,593	10,600	0,155	0,438	0,875	-320,059	-49,67	-53,81	е Т			
					Sum	-4099,42	Sum	-1109,37				
	1300,000	~										
Wall	10	D [m]	e [m]	1,12	L [m]	N [KN]	M [kNm]	a (kN)	Proportion Q/H	Position of the resulting force N	N [KN] sumV actual sum	nV target discrepancy in %
Wali 1	0.590	0.000	0,152	0,438	0,875	-320,543	48,75	-58,40	-4%	inside the cross section	-320,25 -5884 50	5866,8 U%
Wall 2	1.465	0.000	0,590	0,875	1,750	-251,758	-148,61	-77,52	-6%	inside the cross section	-281,10	
Wall 3	1.193	0000	0.443	0.750	1.500	-332,243	-147,28	-69,15	-5%	inside the cross section	-6,76	
Wall 4	0.290	0.000	0.040	0.250	0,500	-218,952	-8,69	-12,37	-1%	inside the cross section	-232,01	
Wall 6	1.976	5.300	0.663	1,313	2,625	-1214,142	-805,22	-310,71	-24%	inside the cross section	-422,91	
Wall 5	1.478	3,750	0,353	1,125	2,250	-753,903	-265,83	-289,03	-22%	inside the cross section	-305,27	
Wall 7	2,241	7,450	0,741	1,500	3,000	-262,775	-194,69	-184,39	-14%	inside the cross section	-1568,29	
Wall 8	0,639	9,300	0,139	0,500	1,000	-436,758	-60,84	-67,88	~7%	inside the cross section		
Wall 1	0,088	10,600	0,225	0,313	0,625	-14,732	3,31	-13,74	-1%	inside the cross section		
Wall 1	1,252	10,600	0,502	0,750	1,500	-152,725	-76,62	-52,25	-4%	Inside the cross section		
Wall 9	0'280	10,600	3 0,153	0,438	0,875	-356,748	-54,40	-29,/8	8.2			
					Sum	4315,28	Sum	-1215,22				

Annex AH2-mod/H-pos/middle

report sce-24005005 from 2005-04-21

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY INSTITUTE OF CONCRETE AND MASONRY STRUCTURES

Annex AH2-mod/H-pos/cap

()

report sce-24005005 from 2005-04-21

House 2-modified; H positive

Shear-Walls

N positive Tension

N negative Compression

Q positive compared to the direction of the horizontal force H Q negative compared to the direction of the horizontal force H

e negative compared to the direction of the horizontal force H

e positive compared to the direction of the horizontal force H

		e [m] -0 105	L/2 0.438	L [m]	N [KN]	M [kNm] 9.17	0 [KN] -1.12	Proportion Q/H	Positian of the resulting force N inside the cross section
0,000 -0,105 0,42 0,000 0.038 0,87	-0,105 0,42 0.038 0,87	0,8,0 (8,0	2 2	0,8/5	-240,099	-9,15	-9,45	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	inside the cross section
0,000 0,054 0,7	0,054 0,7	0.7	3	1,500	-173,591	-9,32	-7,02	-7%	inside the cross section
0,000 -0,009 0,25	-0,009 0,25	0,25	õ	0,500	-148,609	1,35	-1,28	-1%	inside the cross section
5,300 0,168 1,31	0,168 1,31	1,31	3	2,625	-521,749	-87,55	-12,90	-13%	inside the cross section
3,750 0,119 1,12	0,119 1,12	1,12	22	2,250	-359,453	42,60	0,08	%0	inside the cross section
7,450 0,180 1,50	0,180 1,50	1,50	0	3,000	-329,280	-59,24	-49,61	-50%	inside the cross section
9,300 0,010 0,50	0,010 0,50	0,50	0	1,000	-129,605	-1,33	-1,05	-1%	inside the cross section
10,600 0,029 0,31	0,029 0,31	0,31	3	0,625	-86,766	-2,51	4,06	4%	inside the cross section
10,600 0,023 0,75	0,023 0,75	0,75	0	1,500	-256,221	-5,84	-5,82	-6%	inside the cross section
10,600 0,100 0,43	0,100 0,43	0,43	20	0,875	-90,944	-9,13	-1,53	-2%	inside the cross section
				l une	66'0757-		01102-		
D [m] e [m] U2	e [m] 1/2	L/2		۲ [m]	N [kvi]	[ww]] W	a [kN]	Proportion Q/H	Position of the resulting force N
0,000 0,102 0,43	0,102 0,43	0,43		0,875	-96,775	-9,88	-3,08	°52≁	inside the cross section
0,000 0,076 0,87	0,076 0,87	0,87!	5	1,750	-237,067	-17,97	-15,18	-8%	inside the cross section
0,000 0,081 0,750	0,081 0,750	0,75(1,500	-181,074	-14,72	-10,83	-5%	inside the cross section
0,000 -0,009 0,25	-0,009 0,25	0,25		0,500	-152,278	1,43	-1,64	-1%	inside the cross section
5,300 0,222 1,31	0,222 1,31	1,3	3	2,625	-562,226	-124,87	-33,21	-17%	inside the cross section
3,750 0,151 1,12	0,151 1,12	÷.	5	2,250	-378,482	-57,15	-15,68	-8%	inside the cross section
7,450 0,378 1,5	0,378 1,5	1,5	8	3,000	-290,582	-109,93	-79,43	40%	inside the cross section
9,300 0,019 0,5	0,019 0,5	0	8	1,000	-142,831	-2,64	-2,84	-1%	inside the cross section
10,600 -0,027 0,3	-0,027 0,3	0,3	13	0,625	-84,329	2,28	4,84	-2%	inside the cross section
10,600 0,051 0,7	0,051 0,7	0.7	3	1,500	-242,144	-12,30	+10,41	-5%	inside the cross section
10,600 0,100 0,4	0,100 0,4	0,4	38	0,875	-100,305	-10,07	-3,78	-2%	inside the cross section
				Sum	-2468,09	Buns	-180,93		
				•					
D[m] e [m] L	6 [m]	ב	2	۲ [m]	N [kN]	M [kNm]	a [kN]	Proportion QiH	Position of the resulting force M
0,000 0,101 0,4	0,101 0.4	0,4	38	0,875	-106,336	-10,78	-5,48	-2%	Inside the cross section
0,000 0,120 0,8	0,120 0,8	0,8	75	1,750	-233,521	-27,91	-22,38	-7%	inside the cross section

Page 1/4

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEER INSTITUTE OF CONCRETE AND MA

Annex AH2-mod/H-pos/cap

()

Ċ

-657,49 -585,12 -424,83 -244,58 -3332,32

report sce-24005005 from 2005-04-21

		_	_	*****	*****	*******	*****	_		_		*****	******	******		*****		_		_				*****		******							_		_	_						_	_	_
inside the cross section inside the cross section			Position of the resulting force N	inside the cross section				Position of the resulting force N	inside the cross section	inside the cross section	insude the cross section	inside the cross section			Position of the resulting force N	inside the cross section	inside the cross section inside the more section	Inside the Closs sector																										
-1%	-20%	-12%	-30%	-2%	-2%	-6%	-2%			Proportion Q/H	-2%	-7%	-5%	-1%	-22%	-14%	-24%	-2%	-2%	-6%	-2%					-2%	4%	\$Q	% I-	-17%	-18%	-2%	-1%	4%	-3%			Proportion QiH	-3%	÷%	-5%	-1%	-25%	-1370
-2,07	-59,71	-35,55	-89,37	-5,39	-6,17	-16,84	-6,82	-265,33		Q [kN]	-8.01	-29,92	-20,53	-2,52	-87,18	-56,12	-95,52	-8,03	-7,65	-23,48	-10,00	-348,95			g [kN]	-14,20	-36,02	-29,76	29'2"	-105.00	-109,32	-14,60	-8,72	-24,84	~17,89	-512,83		o [kn]	-17,94	-41,31	-31,55	4,29	-173,48	-132,04
-20,84	-167,87	-73,84	-121,91	-3,97	2,17	-19,13	-11,21	Sum		[ww]	-11,83	-38,10	-27,26	1,65	-213,69	-91,94	-117,74	-5,43	2,13	-25,97	-12,56	sum			M [kNm]	-14,10	-55,02	-38,90	CR'I	-139.40	-88,33	-8,32	2,48	-34,86	-15,43	Sum		M [kNm]	-15,17	-61,59	-45,00	2,19	-356,45	-153, 10
-156,752	-608,227	401,110	-266,401	-157,370	-79,122	-226,145	~111,458	-2535,20		[kw] N	115,367	-229,862	-196,254	-161,553	-656,490	-424,490	-254,240	-172,346	-72,180	-209,565	-122,507	-2614,65			N IKNI	-132,801	-229,252	-213,123	-1/1,430	458.998	-252,447	-202,432	-56,464	-185,498	-144,840	-2804,90		N [kv]	-142,167	-229,561	-224,878	-176,860	-807 723	+12,414
0,500	2,625	2,250	3,000	1,000	0,625	1,500	0,875	Sum		L [m]	0,875	1,750	1,500	0,500	2,625	2,250	3,000	1,000	0,625	1,500	0,875	Eng			r [m]	0,875	1,750	1,500	nnc'n	2.250	3,000	1,000	0,625	1,500	0,875	Sun		[<u>]</u>]	0,875	1,750	1,500	0,500	2,625	TCZ'Z
0,250	1,313	1,125	1,500	0,500	0,313	0,750	0,438			1.12	0,438	0,875	0,750	0,250	1,313	1,125	1,500	0,500	0,313	0,750	0,438			<u>-</u>		0,438	0,875	0,/0	007'0	1.125	1,500	0,500	0,313	0,750	0,438			г3	0,438	0,875	0,750	0,250	1,313	3, 120
-0,010	0,276	0,184	0,458	0.025	-0,027	0,085	0,101			e [m]	8,103	0,166	0,139	-0,010	0,326	0,217	0,463	0,032	-0,030	0,124	0,103				e m	0,106	0,240	181,0	10.7	0,304	0,350	0,041	-0,044	0,188	0,107			6 [m]	0,107	0,268	0,200	-0.012	0,441	U,341 L
0,000	5,300	3,750	7,450	9,300	10,600	10,600	10,600			[ɯ] O	0,000	0,000	0,000	000'0	5,300	3,750	7,450	9,300	10,600	10,600	10,688			:	<u>[m]</u>	0,000	0000	0000	non'n	3,750	7,450	9,300	10,600	10,600	10,600			[m] D	0'000	0,000	000'0	000'0	5,300	ne/'s
0,860	1,589	1,309	1,958	0,525	0,285	0,835	0,538		400,000	æ	0,540	1,041	0,889	0,240	1,638	1,342	1,963	0,532	0,283	0,874	0,540		600,000		е 	0,544	1,115	0,937	407'n	1,429	1,850	0,541	0,269	0,938	D,544		700,000	q	0,544	1,143	0,950	0,236	1,754	1,400
Wall 3 Wall 4	Wall 6	Wall 5	Wall 7	Wall 8	Wall 11	Walf 10	Wall 9			Wall	Wail 1	Wali 2	Wall 3	Wall 4	Wall 6	Wall 5	Wali 7	Wall 8	Wall 11	Wall 10	Wail 9	_			wau	Wall 1	Wali Z	Wali 3	4 EIPAA	Wall 5	Wall 7	Wall 8	Wall 11	Wall 10	Wall 9			Wall	Wali 1	Wali 2	Wali 3	Wall 4	Wall 6 Minin 6	C HEAN

al sumV target discrepancy in %	5866,8 0%						
sumV actu:	-5869						
N [KN]	-902,44	-480,40	-607,36	-562,81	-440,16	-260,88	-2254.06

Page 2/4

		-2869,38						N [KN] sumV actual sumV target discrepancy in %	-733,42 -5785 5866,8 -1%	-404,85	-381,68	-431,31	-343,77	-2749,09							N [KN] sumV actual sumV target discrepancy in %	-690,24 -5825 5866,8 -1%	-386,54			-362,80	-2646,13							N [KN] sumV actual sumV target discrepancy in %	-690,24 -5952 5866,8 1%	-386,54	-345,93	-413,24	-44/,35					
	Annex AH2-mod/H-pos/cap	inside the cross section	inside the cross section		inside the cross section			Q/H Position of the resulting force N	inside the cross section				OUH Position of the resulting force N	inside the cross section				n Q/H Position of the resulting force N	inside the cross section			inside little closs section inside the cross section	inside the cross section																					
		-16%	3%	817	\$			Proportion	-345	-6%	-5%	-1%	-19%	-15%	3%	-1%	-4%	Å T			Propertion	-3%	-8%	*	%1- 74%	-18%	-14%	3%	-1%	3%		7		Proportion	-4%	-6%	-5%	-1%	23%	-18%	Nol- 8	4%	3%	
()		-113,92	-18,88	50 I 77 I	-25,52	-591,58		Q IKNI	-23,10	-45,33	-36,41	-5,17	-151.13	-121,96	-24,32	-8,89	-28,33	-28,36	-666,43		Q [KN]	-29,31	-51,65	-40,43	22:9-	-165 98	-126,35	-31,35	00'6'	-30,00	-34,55	1.10		G [kN]	-35,44	-57,61	-46,22	-7,44	-230,22	-179.3	-133,61	-38,48	-30,39	
		-87,97	-9,44	3,12	-35,82	Sum		M [kNm]	-16,11	-65,56	-49,68	2,57	-165.78	-76,31	-10,80	4,30	-35,11	-18,24	Sum		M [kNm]	-16,94	-66,53	-52,67	3,08	113,12	-73,22	-11,94	5,84	-32,83	-18'07			M [kNm]	-17,85	-66,82	-56,24	3,61	-447,08	-157,00	-72.11	-13,39	-30,42	
	DESY JCTURES	-251,133	-216,510	-51,097	-174,466 -156.501	-2963.37		N EKNI	-152.014	-231,974	-237,116	-182,562	-000,047	-257,812	-231,335	-44,198	-165,547	-169,385	-3035,57		IN [KN]	-163,310	-232,781	-252,150	-188,787	-525 401	-266,528	-246,289	-38,837	-157,514	-383,045	R0'03		N [kN]	-176,038	-231,611	-265,032	-195,297	-976,156	-544,587	-273,349	-261,992	-151,627	
	ND GEC ZY STRI	3,000	1,000	0,625	1,500	Sum		[m]	0.875	1,750	1,500	0,500	2 250	3,000	1,000	0,625	1,500	0,875	Sum		۲ [۳]	0,875	1,750	1,500	0,500	0202	3,000	1,000	0,625	1,500	6/9/9	line		[m] T	0,875	1,750	1,500	0,500	2,625	2,250	3,000	1,000	1,500	
	f ERING A ASONF	1,500	0,500	0,313	0,750	202/2		1/2	0.438	0,875	0,750	0,250	1 125	1,500	0,500	0,313	0,750	0,438			L12	0,438	0,875	0,750	0,250	1175	1,500	0,500	0,313	0,750	0,438			LI2	0,438	0,875	0,750	0,250	1,313	1,125	1,500	0,500	0,750	ļ
		0,350	0,044	-0,061	0,205	2		e îmî	0.106	0,283	0,210	-0,014	0,434	0.296	0.047	-0,097	0,212	0,108			e [m]	0,104	0,286	0,209	-0,016	0,204	0,275	0,049	-0,150	0,208	0,10/			e [m]	0,101	0,289	0,212	-0,019	0,458	0,288	0,264	0,051	0,201	
	ERSITY CIVILE DNCRET	7,450	9,300	10,600	10,600	200101		D [m]	0000	0,000	0,000	0,000	3,500 3,750	7.450	9,300	10,600	10,600	10,600			[m] D	000'0	0,000	0,000	0,000	0,500	7,450	9,300	10,600	10,600	10,600			D [m]	0,000	0,000	0'000	0'00	5,300	3,750	7,450	9,300	10,600	
	cal UNIV Ment of Te of cc	1,850	0,544	0,251	0,955	2471	800,000	. a	0.544	1,158	0,960	0,236	1,/00	1.796	0.547	0.215	0,962	0,545		000'006	æ	0,541	1,161	0,959	0.234	00/1	1.775	0,549	0,162	0,958	0,545		1000,000	a	0,539	1,164	0,962	0,232	1,771	1,413	1,764	0,551	0,951	
	TECHNIK DEPART INSTITU	Wall 7	Wall 8	Wall 11	Wall 10	C HDAA		Irwi	Wall 1	Wall 2	Wali 3	Wall 4	Wall 5	Wall 7	Wall 8	Mail 11	Wall 10	Wall 9	-		Wall	Wall 1	Wall 2	Wall 3	Wall 4	VVali 5	Wall 7	Wall 8	Wall 11	Wall 10	Wall 9			Wall	Wall 1	Wall 2	Wali 3	Wall 4	Wall 6	Wall 5	Wall 7	Wall 8	Wall 10	,

Page 3 / 4

INSTIT	RTMENT C	ONCRE		IDOCUM.	אוא	UCTURES					
· Wall 9	0,544	10,600	0,107	0,438	0,875	-197,713	-21,10	-40,67	-4%	inside the cross section	
					Sum	-3305,74	Sum	-809,13			
	1100,000										
Wall	ę	[m] 0	e [m]	L12	۲ [س]	INM] N	M [kNm]	a [kN]	Proportion Q/H	Position of the resulting force N	N [KN] sumV actual sumV target discrepancy in %
Wall 1	0,537	0,000	0,100	0,438	0,875	-191,552	-19,08	-41,80	4%	inside the cross section	-636,72 -5972 5866,8 2%
Wałl 2	1,163	0000	0,268	0,875	1,750	-230,262	-66,22	-60,64	-6%	inside the cross section	-366,48
Wall 3	0,963	0,000	0,213	0,750	1,500	-277,589	-59,07	-50,58	-5%	inside the cross section	-312,82
Wall 4	0,229	0,000	-0,021	0,250	005,0	-202,500	4,25	-8,8/	-170		
Wall 6 Wall 5	1 776	3 760	0,464	1,313	2,625	-1028,028	-150.71	-243,08 -193.57	-18%	inside the cross section	-45.1,20
Wall 7	1.687	7,450	0,187	1,500	3,000	-282,343	-52,77	-151,37	-14%	inside the cross section	-2527,11
Wall 8	0,557	9,300	0,057	0'200	1,000	-280,576	-15,88	-45,73	-4%	inside the cross section	
Wali 15	0,001	10,600	-0,312	0,313	0,625	-28,212	6,80	-9,88	-1%	inside the cross section	
Wall 10	0,938	10,600	0,188	0,750	1,500	-147,529	-27,77	-29,84	-3%	inside the cross section	
Wall 9	0.545	10,600	0,107	0,438	0,875	-216,409	-23,20	-45,84	4%	inside the cross section	
				:	Sum	-3445,16	uns Sun	-881,20			
	1200,000										
Wall	ę	D [m]	e m	5	[m] [N [kN]	M [kNm]	a [kN]	Proportion Q/H	Position of the resulting force N	N [KN] sumV actual sumV target discrepancy in %
Wall 1	0,535	0,000	0,098	0,438	0,875	-207,100	-20,25	-47,30	4%	inside the cross section	-582,30 -6004 5866,8 2%
Wall 2	1,153	0,000	0,278	0,875	1,750	-231,095	-64,31	-63,16	-5%	inside the cross section	-344,08
Wall 3	0,962	000'0	0,212	0,750	1,500	-289,671	-61,50	-56,65	-5%	inside the cross section	-286,43
Wall 4	0.227	0001	-0,023	0,250	0,500	-209,597	4,88	-10,31	-1%	inside the cross section	
Wall 6	1,785	5,300	0,472	1,125	2,625	-1077,968 -575.636	-508,80	-260,52	-22%	inside the cross section inside the cross section	-359.79
talent 7	1 631	7 450	1010	1 500	000 8	-288.051	-34.85	-166.97	-14%	Inside the cross section	-2415.96
Wall 8	0.562	9,300	0,062	0.500	1,000	-299,156	-18,46	-52,03	4%	inside the cross section	
Wall 11	-0,057	10,600	0,369	0,313	0,625	-28,355	10,47	-10,85	-1%	outside the cross section	
Wall 1(0,902	10,600	0,152	0,750	1,500	-146,566	~22,20	-30,86	3%	inside the cross section	
Wall 9	0.544	10,600	0,107	0,438	0,875	-235,086	~25,08	-50,36	*1		
					Eng	-3588,28	Sum	-957,25			
	1300,000										
Wall	rs	[ɯ] Q	6 [W]	L12	۲ [m]	N [KN]	M [kNm]	Q [kN]	Proportion Q/H	Position of the resulting force N	N [KN] sumV actual sumV target discrepancy in %
Wall 1	0,532	000'0	0,095	0,438	0,875	-229,864	-21,73	-54,12	4%	inside the cross section	-502,98 -6028 5866,8 3%
Wall 2	1,129	0,000	0,254	0,875	1,750	-230,246	-58,37	-59,93	-5%	inside the cross section	-318,88
Wall 3	0,955	000'0	0,205	0'220	1,500	-299,213	-61,34	-63,37	-5%	inside the cross section	-269,68
Wall 4	0,223	0,000	-0,027	0,250	0,500	-219,107	5,87	-12,53	-1%	inside the cross section	-372,47
Wall 6	1,783	5,300	0,470	1,313	2,625	-1137,523	-534,64	-276,95	-21%	inside the cross section	-3/6,99
Wall 5	1,359	3,750	0,234	1,125	2,250	-579,685	-135,65	-221,53	w. / t-		
Wali 7	1,514	7,450	0,014	1,500	3,000	-304,768	4,14	-192,19	-10% 20/2	inside the cross section	-2208,224
wall 8	6,569	002'6	A00,0		1000 C	-325,618	-22,42	-26,67	70*	mand the cross section	
Wall 1	1 -0,046	10,601	-0.358	0,313	678'N	-34,480	14,30	11,50	302	unside the cross section	
VVdu T	0.542	10,600	0,105	0.438	0.875	-263.600	-27.63	-54.34	4%	inside the cross section	
					Sum	-3770,04	l sum	-1039,02			

с. Сў

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY INSTITUTE OF CONCRETE AND MASONRY STRUCTURES

Annex AH2-mod/H-pos/base

report sce-24005005 from 2005-04-21

House 2-modified; H positive

Shear-Walls

transverse walls

N positive Tension

N negativ Compression

Q positive compared to the direction of the horizontal force H Q negativ compared to the direction of the horizontal force H e negativ compared to the direction of the horizontal force H e positive compared to the direction of the horizontal force H

Nali Nali 1										Position of the resulting force
Vali 1	a	[ɯ] ɑ	e [m]	77	L [m]	N [kN]	M [kNm]	a [kN]	Proportion Q/H	2
	0,420	0'000	-0,018	0,438	0,875	-96,390	1,70	1,23	1%	inside the cross section
Vall 2	1,019	0,000	0,144	0,875	1,750	-257,468	-37,10	-12,35	-12%	inside the cross section
Vail 3	0,877	0,000	0,127	0,750	1,500	-187,649	-23,89	-4,71	-5%	inside the cross section
Vail 4	0,262	0,000	0,012	0,250	0,500	-148,603	-1,71	-1,34	-1%	inside the cross section
Vail 6	1,500	5,300	0,187	1,313	2,625	-543,878	-101,71	-20,65	-21%	inside the cross section
Vall 5	1,257	3,750	0,132	1,125	2,250	-401,719	-52,99	-31,96	-32%	inside the cross section
Vall 7	1,933	7,450	0,433	1,500	3,000	-297,965	-129,05	-46,57	-47%	inside the cross section
Vall 8	0,542	9,300	0,042	0,500	1,000	-139,362	-5,87	-5,43	-5%	inside the cross section
Vall 11	0,272	10,600	-0,041	0,313	0,625	-81,497	3,31	-1,88	-2%	inside the cross section
Val 10	0,847	10,600	0,097	0,750	1,500	-269,126	-26,02	-8,11	%B-	inside the cross section
Vall 9	0,456	10,600	0,018	0,438	0,875	-101,111	-1,83	0,89	1%	inside the cross section
					Sum	-2524,77	Sum	-130,88		
£	200,000									Position of the resulting forc
Aa lf	¢	[m] D	e [m]	L/2	[m] ၂	N [kN]	[kNm]	Q [kN]	Proportion Q/H	Z
Vali 1	0,482	0,000	0,044	0,438	0,875	-110,832	4 ,91	-0,66	%0	inside the cross section
Vali 2	1,112	0,000	0,237	0,875	1,750	-254,273	-60,16	-18,27	~6~	inside the cross section
Vali 3	0,950	000'0	0,200	0,750	1,500	-195,823	-39,16	-8,79	-4%	inside the cross section
Vali 4	0,266	0,000	0,016	0,250	0,500	-152,280	-2,47	-1,69	-1%	inside the cross section
Vall 6	1,598	5,300	0,285	1,313	2,625	-598,649	-170,85	-41,60	-21%	inside the cross section
Vall 5	1,323	3,750	0,198	1,125	2,250	-438,670	-85,86	-47,81	-24%	inside the cross section
Vall 7	2,437	7,450	0,937	1,500	3,000	-242,337	-227,05	-76,58	-38%	inside the cross section
Vall 8	0,565	9,300	0,065	0,500	1,000	-159,316	-10,36	-8,26	-4%	inside the cross section
Vall 11	0,379	10,600	0,067	0,313	0,625	-73,985	-4,94	-3,08	-2%	inside the cross section
Vall 10	0,925	10,600	0,175	0,750	1,500	-251,239	-43,92	-13,14	%2-	inside the cross section
Vall 9	0,486	10,600	0,048	0,438	0,875	-116,447	-5,62	-1,26	-1%	inside the cross section
					Sum	-2593,85	Sum	-221,15		
뿦	300,000									
Vall	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	D [m]	e [m]	112	[m] T	N IKNI	M [kNm]	Q [KN]	Proportion Q/H	Position of the resulting force N
Alali 4	0 507	0000	1 0.020	0.428	0.875	-176 977	. 8 85	-2 96	-1%	inside the cross section

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY INSTITUTE OF CONCRETE AND MASONRY STRUCTURES

Annex AH2-mod/H-pos/base

report sce-24005005 from 2005-04-21

inside the cross sector	-170	-3,03	78'9	1 767'L/L-	I nnc'n	UCZ'N	6,030	0,000	0,200	Wall 4
Inside the cross section	%G-	-28' lA	-113,61	-235,359	0002.0	0,/50	0,483	0000	1,233	Wall 3
inside the cross section	%9	-38,83	~148,10	-259,362	1,750	0,875	0,571	0,000	1,446	Wall 2
inside the cross section	~5%	-11,23	-22,52	-178,723	0,875	0,438	0,126	000'0	0,564	Wall 1
Position of the resulting force N	Proportion Q/H	a [kN]	M [kNm]	N [KN]	[m]	1/2	e [m]	D [m]	a	Wall
									600,000	#
		-476,47	sum	-2975,42	Sum					
inside the cross section	-2%	-10,67	-20,71	-179,155	0,875	0,438	0,116	10,600	0,653	Wali 9
Inside the cross section	-6%	-28,95	-100,94	-196,605	1,500	0,750	0,513	10,600	1,263	Wall 10
outside the cross section	-2%	-8,88	-10,57	-25,774	0,625	0,313	0,410	10,600	-0,098	Wali 11
inside the cross section	-4%	-19,90	-28,74	-230,999	1,000	0,500	0,124	9,300	0,624	Wali 8
inside the cross section	-19%	-94,04	-209,45	-165,209	3,000	1,500	1,268	7,450	2,768	Wall 7
inside the cross section	-22%	-112,15	-215.31	-583,490	2,250	1,125	0,369	3,750	1,494	Wall 5
inside the cross section	-25%	-127,44	-438,10	-800,190	2,625	1,313	0,548	5,300	1,860	Wall 6
inside the cross section	-1%	-2,95	-5,32	-166,223	0,500	0,250	0,032	0,000	0,282	Wall 4
inside the cross section	-5%	-24,69	-96,76	-222,135	1,500	0,750	0,436	000'0	1,186	Wall 3
inside the cross section	-8%	-38,87	-140,17	-245,875	1,750	0,875	0,570	0,000	1,445	Wall 2
inside the cross section	-2%	-7,93	-17,43	-159,767	0,875	0,438	0,109	0,000	0,328	Wall 1
N	Proportion O/H	Q [KN]	M [kNm]	N [kN]	۲ [m]	Ц2	e [m]	[w] Q	47	Wali
Daristan af the analyting faces									500,000	분
		-393,99	Sum	-2822,69	uns					
inside the cross section	-2%	-7,27	-15,33	-157,091	0,875	0,438	0,098	10,600	0,535	Wall 9
inside the cross section	-7%	-27,22	-50,06	-208,995	1,500	0,750	0,431	10,600	1,181	Wall 10
inside the cross section	~2%	-7,04	-9,16	-44,359	0,625	0,313	0,205	10,500	0,519	Wall 11
inside the cross section	-4%	-15,83	-22,23	-206,367	1,000	0,500	0,108	9,300	0,608	Wall 8
inside the cross section	-23%	-90,24	-223,75	-180,200	3,000	1,500	1,242	7,450	2,742	Wall 7
inside the cross section	-22%	-88,95	-170,19	-531,859	2,250	1,125	0,320	3,750	1,445	Wall 5
inside the cross section	-24%	-96,84	-343,49	-729,888	2,625	1.313	0.471	5,300	1.783	Wall 6
inside the cross section	-1%	-2,56	4.31	-161.489	0.500	0,250	0,027	0,000	0.277	Wall 4
inside the cross section	-5%	-19.17	-76.87	-213.282	1.500	0.750	0.360	0,000	1,110	Wall 3
colocy are set of the	00/	10,07	12,30	- 140, 104 - 100	C/0/0	0,4,00	160'0	2000	070'0	HEVY
N inside the cross section	Proportion Q/H	Q [kN]	M [kNm]	N [kN]	L [m]	L2 2,55	e [m]	[w] 0	a 200	Wall Wall
Position of the resulting force									400,000	붓
		-306,55	Engo	c/'9697-	uns					
inside the cross section	-1%	4,20	-10,40	-136,421	0,875	0,438	0,076	10,600	0,514	Wall 9
inside the cross section	-7%	-20,07	-66,71	-230,418	1,500	0,750	0,290	10,600	1,040	Wall 10
inside the cross section	-2%	4,97	-7,01	-60,405	0,625	0,313	0,116	10,600	0,429	Wall 11
inside the cross section	4%	-12,00	-16,17	-182,483	1,000	0,500	0,089	9,300	0,589	Wall 8
inside the cross section	-29%	-86,06	-236,69	-201,338	3,000	1,500	1,176	7,450	2,676	Wall 7
inside the cross section	-23%	-67,87	-127,55	-484,060	2,250	1,125	0,264	3,750	1,389	Wall 5
inside the cross section	-23%	-68,75	-255,48	-662,718	2,625	1,313	0,386	5,300	1,698	Wall 6
inside the cross section	-1%	-2,12	3,37	-156,736	0,500	0,250	0,022	0,000	0,272	Wall 4
inside the cross section	-5%	-13.85	-57.54	-204 759	1,500	0.250	0.281	0000	1 031	Wali 3
inside the cross section	%8-	-25.72	-88.03	-250.432	1.750	0.875	0.352	0.000	1.227	Wall 2

-486, 15 -557, 08 -514, 50 -509, 22 -509, 22 -219, 50 -3170, 61

liscrepancy in %	0%						
jet d							
sumV targ	5866,8						
sumV actual	-5871						
[N]	839,88	480,74	-481,97	471,82	-547,27	-226,90	8,58

discrepancy in %	0%						
sumV target	5866,8						
sumV actual	-5868						
N [KN]	-789,21	467,99	-401,15	-425,39	-575,92	-232,73	-2892,40

Page 2 / 5

TECHNICAL UNIVERSITY MUNICH DEPARTMENT OF CIVIL ENGINEERING AND GEODESY INSTITUTE OF CONCRETE AND MASONRY STRUCTURE

Annex AH2-mod/H-pos/base

Ż

report sce-24005005 from 2005-04-21

1,543 3,750 0,418 2,771 7,450 1,271	0,624 0,418 1,271		1,313 1,125 1,500	2,625 2,250 3,000	-870,497 -635,870 -157,953	-543,02 -265,60 -200,79	-162,65 -140,50 -99,96	-27% -23% -17%	inside the cross section inside the cross section inside the cross section
0,641 9,300 0,141 0,500 1,0	0,141 0,500 1,0	0,500 1,0	\$ -	8	-257,216	-36,14	-24,89	-4%	inside the cross section
0,852 10,600 0,540 0,313 0,625	0,540 0,313 0,625	0,313 0,625	0,625		-13,529	-7,30	-6,90	-1%	outside the cross section
1,2// 10,600 0,52/ 0,750 1,500 0,569 10,600 0,131 0,438 0,875	0.131 0.438 0.875	0,750 1,500 0.438 0.875	0.875	~~	-196,040 -204.079	-103,33	-14,90	-2%	inside the cross section inside the cross section
uns.	Sum	Sum	Sum	Townsell.	-3179,88	Sum	-559,83		
000'004									Position of the resulting force
a D[m] e[m] L/2 £[m]	e[m] L/2 [[m]	L/2 [m]	[m]		N [kN]	M [kNm]	a [kN]	Proportion Q/H	2
0,578 0,000 0,141 0,438 0,875	0,141 0,438 0,875	0,438 0,875	0,875		-199,122	-27,98	-14,79	-2%	inside the cross section
1,471 0,000 0,596 0,875 1,750	0,596 0,875 1,750	0,875 1,750	1,750		-275,345	-164,00	-45,36	~8%	inside the cross section
1,228 0,000 0,478 0,750 1,500	0,478 0,750 1,500	0,750 1,500	1,500	-+	-257,536	-123,18	-30,50	-4%	inside the cross section
0,294 0,000 0,044 0,250 0,500	0,044 0,250 0,500	0,250 0,500	0,500	_	-176,599	-7,81	-4,28	-1%	inside the cross section
1,986 5,300 0,674 1,313 2,625	0,674 1,313 2,625	1,313 2,625	2,625		-935,906	-630,71	-191,14	-27%	inside the cross section inside the cross section
1,334 3,730 U,403 1,123 2,230	007'7 C71'I 605'0	0277 C71-1	7,230		-004,001	-321, 14	-11 [,14	450/	incide the store realized
2,/8/ /,450 1,29/ 1,500 3,000	1,29/ 1,500 3,900	1,500 3,500	3,500		122,261-	04"JAL-	-105,57		inside the closs sector
	0,100 0,000 1,000 0.522 0.313 0.535	0.243 0.254	2000'1	_	100'E02-	3 84	- 4 A7	-196	mitside the cross section
4,039 10,909 9,339 0,313 0,923 1.310 10.600 0.560 0.750 1.500	0.560 0.750 4.500	0,213 0,023	1 500		-105 107	100 85	-4'4- -78 74	4%	inside the cross section
0.583 10.600 0.145 0.438 0.875	0.145 0.438 0.875	0.438 0.875	0.875		-230.841	-33.52	-19.60	-3%	inside the cross section
mns	Sum	Sum	Sum		-3399,80	Sum	-644,27		
900,000 a Dfmi eimi 1/2 Lin	e [m] L/2 L. [r	רש	r r	5	N IKNI	M [kNm]	Q [KN]	Proportion QH	Position of the resulting force N
0,593 0,000 0,156 0,438 0,875	0,156 0,438 0,875	0,438 0,875	0,875		-224,317	-34,93	-19,76	-2%	inside the cross section
1,485 0,000 0,610 0,875 1,750	0,610 0,875 1,750	0,875 1,750	1,750		-294,997	~180,07	-48,54	-6%	inside the cross section
1,247 0,000 0,497 0,750 1,500	0,497 0,750 1,500	0,750 1,500	1,500	-	-279,140	-138,65	-36,81	-5%	inside the cross section
	0,052 0,250 0,500	0,250 0,500	0.50		-182,176	-9,45	-5,14	-1%	inside the cross section
2,041 0,300 0,760 1,313 2,023 4 675 3 750 0,550 4 175 3 250	072 01211 0710 0710 0710	670'7 615'1 4 475 5 750	070'7		-703 864	AD'77)-	100,012-	-25%	inside the cross section
2,804 7,450 1,304 1,500 3,000	1,304 1,500 3,000	1,500 3,000	3,000		-149,352	-194,68	-108,35	-14%	inside the cross section
0,671 9,300 0,171 0,500 1,000	0,171 0,500 1,000	0,500 1,000	1,000		-315,720	-53,96	-37,57	-5%	inside the cross section
1,939 10,600 1,626 0,313 0,625	1,626 0,313 0,625	0,313 0,625	0,625		-1,526	-2,48	-4,11	-1%	outside the cross section
1,322 10,600 0,572 0,750 1,500	0,572 0,750 1,500	0,750 1,500	1,500		-202,468	-115,88	-31,93	-4%	inside the cross section
0,597 10,600 0,160 0,438 0,876	0,160 0,438 0,875	0,438 0,875	0,875		-260,533	-41,58	-25,36	-3%	inside the cross section
Sum	Sum	Sum	Sum	_	-3606,82	Sum	-731,23		
300,000									
								Bronned Off	Position of the resulting force
a <u>b</u> [n] e[n] uz c[n] centro centro centro centro			L [11]	-	faivi M	Ising H	av P	745	inside the cross section
	n'it's n'+30 n'et's	n'+20 n'013	202	~~~	+075007-	1,01-	04/07-		
1,498 0,000 0,623 0,875 1,750	0,623 0,875 1,750	0,875 1,750	1,750		-316,893	-197,42	-55,29	-6%	inside the cross section
1,256 0,000 0,506 0,750 1,500	0,506 0,750 1,500	0,750 1,500	1,500		-304,442	-154,05	-38,84	4%	inside the cross section
0,311 0,000 0,061 0,250 0,500	0,061 0,250 0,500	0,250 0,500	0,500		-188,292	-11,49	-6,21	-1%	inside the cross section
2,094 5,300 0,781 1,313 2,625	0,781 1,313 2,625	1,313 2,625	2,625		-1043,852	-815,46	-236,25	-26%	inside the cross section
1//28 3,750 0,603 1,125 2,250	u,603 1,125 2,250	1,125 2,250	2,250		-726,955	-436,64	-227,12	1004	inside trie Gross section
Z 8U1 7,450 1,301 1,500 3,00	1,301 1,500 3,00	1,500 3,00	3,00	7	-146,9/8	-181,TB	-109,45	01.71 -	וווצותם ווום כו המס מבהייתי

Page 3 / 5

	report sce-24005005 from 2005-04-21		sumV target discrepancy in % 5866,8 1%	sumV target discrepancy in % 5866,8 2%	sumV farget discrepancy in % 5866,8 4%
·			N [KN] sumV actual -461,81 -5939 -319,10 8,72 -631,15 -631,15 -245,74 -1881,22	N [KN] sumV actual -383,44 -6010 -288,31 17,60 -214,47 -521,54 -1725,86	N [KN] sumV actual -320,52 -6106 -268,23 43,12 -186,22 -186,22 -231,22 -231,25 -1567,40
	pase	Wall im Arsch	Wall im Arsch	Wall im Arsch	Wall im Arsch
	Annex AH2-mod/H-pos/	inside the cross section outside the cross section inside the cross section inside the cross section	Position of the resulting force N inside the cross section inside the cross section	Position of the resulting force N inside the cross section inside the cross section	Position of the resulting force N inside the cross section inside the cross section
		-5% 0% -4%	Proportion Q/H -3% -7% -7% -4% -6% -25% -11% -11% -11% -4%	Proportion Q/H -4% -1% -1% -25% -11% -5% -5% -4%	Proportion Q/H -4% -5% -5% -1% -1% -1% -4%
i s Z		-46,85 -0,85 -36,13 -32,79 -32,79 -316,26	G [kM] -33,900 -55,27 -65,27 -44,48 -7,36 -7,36 -7,36 -7,36 -7,36 -7,36 -7,36 -5,69 -96,69 -40,59		Q [hv] 51,61 51,61 51,61 51,61 55,83 0 55,83 10,16 25,85,15 -135,12 -135,12 -135,12 -135,12 -1,62 -1,62 -1,62 -1,62 -1,62 -1,62 -1,62 -1,63 -1,63 -1,63 -1,63 -1,63 -1,63 -1,63 -1,63 -1,63 -1,63 -2,23 -2,53 -2,2
		-66,12 -0,87 -123,11 -52,17 Sum	M [kthm] -54.04 -215.84 -172.20 -13.67 -13.67 -13.67 -13.67 -13.67 -13.69 -13.69 -13.89 -13.89	M [kNm] M [kNm] -65,61 -65,61 -65,61 -189,38 -189,38 -189,38 -189,38 -189,38 -189,38 -180,38 -1190,78 -1	M [kMm] -76,54 -76,54 -76,54 -240,55 -18,97 -1060,37 -665,96 -18,95 -108,45 -108,45 -108,45 -108,45 -113,62 -141,13
	DESY CTURES	-351,704 1,030 -210,554 -291,450 -3833,34	N [kN] -282,038 -335,205 -331,030 -194,704 -194,704 -196,746 -146,259 -4,102 -381,229 -381,229 -381,195 -321,195	N IKN] 314,829 314,829 359,533 359,533 359,533 359,533 147,011 147,011 147,011 147,011 5,884 5,884 5,884 2,595 2,595 2,	N [RN] 345,707 355,629 355,824 355,820 1200,874 1200,874 1200,874 1200,874 1200,874 3528 3,928 3,928 3,928
	ND GEO RY STRU	1,000 0,625 0,875 0,875 Sum	L [m] 0.875 0.875 0.875 0.875 0.875 0.875 0.875 0.0875 0.0875 0.526 0.525 0.525 0.525 0.525 0.525	L [m] 0,875 0,875 0,875 0,875 2,625	L L [m] 0,875 0,875 0,0875 0,0875 0,0875 0,0875 0,0875 0,0875 0,09500 0,0500 0,0500 0,02500 0,02500 0,0250 0,0250 0,0250 0,0250 0,0250 0,0250 0,0250 0,0250 0,0250
	H ERING A MASONI	0,500 0,313 0,750 0,438	L/2 0,438 0,875 0,875 0,875 0,875 0,875 0,875 0,875 0,875 0,875 0,500 0,500 0,500 0,313 0,750 0,313	L12 0,438 0,555 0,555 1,1215 1,125 1,125 0,550 0,550 0,313 0,755 0,313 0,755 0,313 0,755 0,313	L22 0.438 0.438 0.436 0.550 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755 0.755
	Y MUNIC ENGINE TE AND	0,188 -0,845 0,585 0,179	e [m] 0,192 0,644 0,547 0,541 1,303 0,541 1,303 0,541 0,149 0,198	e [m] 0,208 0,208 0,550 0,557 0,557 0,557 0,557 0,557 0,219 0,219	e [m] 0.221 0.575 0.575 0.533 0.519 0.683 0.719 0.683 0.719 0.227 0.227 0.277 0.277 0.277
	IVERSIT OF CIVIL CONCRE	9,300 10,600 10,600	D [m] D [m]	D [m] D (m) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.450 10.600 10.600	D Iml 0.000 0.000 0.000 0.000 0.000 0.000 3.750 3.750 3.750 3.750 1.480 1.0000 10.600 10.600
	IICAL UN TIMENT	0,688 -0,533 1,335 0,617	a 1000,000 a 2000,000 1,519 1,519 1,519 1,519 0,320 0,320 0,320 0,320 0,705 0,705 0,705	a a 0,646 0,646 1,535 1,1277 0,331 1,806 2,798 0,719 0,719 0,719 0,719 0,556 1,355 1,355	a a 0,659 1,250 1,255 1,
	TECHN DEPAR INSTITI	Wall 8 Wall 11 Wall 10 Wall 9	H: Wall 1 Wall 1 Wall 2 Wall 2 Wall 5 Wall 5 Wall 7 Wall 10 Wall 10	H ² Wall 1 Wall 2 Wall 2 Wall 5 Wall 6 Wall 5 Wall 11 Wall 11 Wall 11	H ⁿ Wall Wall 1 Wall 2 Wall 5 Wall 5 Wall 5 Wall 1 Wall 11 Wall 10 Wall 10

HNICAL UNIVERSITY MUNICH	VARTMENT OF CIVIL ENGINEERING AND GEODESY	TITUTE OF CONCRETE AND MASONRY STRUCTURES
TECHNIC	DEPARTI	INSTITUT

Annex AH2-mod/H-pos/base

.

report sce-24005005 from 2005-04-21

inside the cross section			osition of the resulting force	2	inside the cross section											
-5%				Proportion Q/H	-5%	-6%	-5%	-1%	-24%	-23%	-12%	-7%	0%	-4%	-5%	
-55,65	-1094,69			a [kN]	-62,19	-76,44	-67,34	-12,30	-316,65	-298,24	-155,42	-87,28	-3,96	-53,83	-61,12	-1194.77
-87,34	шпş	-		M [kNm]	-92,54	-233,50	-234,07	-23,04	-1150,28	-600,96	-197,03	-127,20	90"0	-143,57	-102,90	Sum
-382,899	-4518,18			N [kN]	-386,864	-330,500	-426,672	-218,560	-1252,344	-782,809	-155,499	-512,916	-0,555	-230,479	-415,777	-4712,97
0,875	Bum			[m] T	0.875	1,750	1,500	0,500	2,625	2,250	3,000	1,000	0,625	1,500	0,875	Sum
0,438				гл	0,438	0,875	0,750	0,250	1,313	1,125	1,500	0,500	0,313	0,750	0,438	
0,228				e [m]	0,239	0,707	0,549	0,105	0,919	0,768	1,267	0,248	-0,099	0,623	0,248	
10,600				[w] D	0,000	0,000	0'000	0,000	5,300	3,750	7,450	9,300	10,600	10,600	10,600	
0,666			1300,000	15	0,677	1,582	1,299	0,355	2,231	1,893	2,767	0,748	0,213	1,373	0,685	
Wall 9			Ŧ	Wall	Wall 1	Wali 2	Wall 3	Wali 4	Wali 6	Wall 5	Wall 7	Wall 8	Wall 11	Wail 10	Wall 9	•

[KN]	sumV actual	sumV target	discrepancy in %
-266,65	-6207	5866,8	6%
-242,05			
1,96			
-151,68			
-605,02			
-230,86			
494,31			